

POLINÔMIOS – DEFINIÇÕES INICIAIS

polinômio

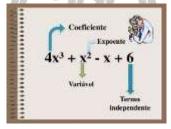
Matemática Soma algébrica de monômios

1. Definição de Polinômio

Denomina-se polinômio na variável x à função definida pela relação:

$$P(x) = a_n.x^n + a_{n-1}.x^{n-1} + + a_2.x^2 + a_1.x + a_0$$

onde: $a_n, a_{n-1}, \dots, a_2, a_1 e a_0$ são números complexos ditos coeficientes, n é um número natural $(n \in N)$, a_0 é o termo independente e x é a variável complexa. A maior potência de x (n) é o grau da equação desde que $a_n \neq 0$.



Exemplos de Polinômios

$$P(x) = 9x^7 - 3x^2 + 7x + 1 \rightarrow Polinômio de grau 7$$

$$P(x) = 2x^2 - 12x - 3 \rightarrow Polinômio de grau 2$$

$$P(x) = 7x^8 - 2x^5 + 11 \rightarrow Polinômio de grau 8$$

Não são polinômios:

$$Q(x) = x^3 - 3x^{-3}$$

$$R(x) = 2\sqrt{x} - 12x$$

Q(x) e R(x) não são polinômios visto que há pelo menos um expoente da variável não é um número natural.

2. Valor Numérico de um polinômio

Valor Numérico de um polinômio P(x), é o valor que se obtém substituindo a variável x por um número α e efetuando as operações indicadas.

Exemplo: Considere $P(x) = x^2 - 6x + 8$.

- Para x = 5, o valor numérico do polinômio é: $P(5) = 5^2 - 6.5 + 8 \rightarrow P(5) = 3$
- Para x = 2, o valor numérico do polinômio é: $P(2) = 2^{2} - 6.2 + 8 \rightarrow P(2) = 0$

Observação:

Quando $P(\alpha)=0$ dizemos que α é a raiz do polinômio.

Observe que no exemplo acima o número 2 é uma das raízes do polinômio $P(x) = x^2 - 6x + 8$.

IMPORTANTE:

<u>Soma dos coeficientes de um polinômio</u>: Para calcular a soma S dos coeficientes de um polinômio P(x), basta calcular o valor numérico do polinômio para x = 1, ou seja, calcular P(1).

Exemplos.

- a) $P(x) = 2x^4 + 3x^2 7x + 10$. Calculando, S = P(1) = 2 + 3 7 + 10 = 8.
- b) Qual a soma dos coeficientes do polinômio $T(x) = (5x + 1)^4$? $S = T(1) = (5.1 + 1)^4 = 6^4 = 1296$.

Consequência: Se a soma dos coeficientes de uma equação algébrica P(x) = 0 for nula, então a unidade é raiz da equação (1 é raiz).

Exemplo: O valor $\mathbf{x} = \mathbf{1}$ é raiz de $40\mathbf{x}^5 - 10\mathbf{x}^3 + 10\mathbf{x} - 40 = \mathbf{0}$, pois a soma dos coeficientes é igual a zero.

3. Identidade de polinômios

3.1.Polinômio identicamente nulo

Um polinômio identicamente nulo se e somente se todos seus coeficientes são iguais a zero.

 $P(x) \equiv 0$

3.2. Polinômios idênticos

Dados os polinômios:

$$P_1(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_2 \cdot x^2 + a_1 \cdot x + a_0$$
 e
 $P_2(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \dots + b_2 \cdot x^2 + b_1 \cdot x + b_0$

Dizemos que que P_1 é idêntico a P_2 se os coeficientes dos termos de mesmo grau sejam iguais, ou seja:

$$P_1 \equiv P_2 \Leftrightarrow a_n = b_n, a_{n-1} = b_{n-1}, ..., a_2 = b_2, a_1 = b_1, a_0 = b_0$$

Consequência:

Se P_1 e P_2 são idênticos, então eles assumem mesmo valor para qualquer valor de x.

$$P_1(x) \equiv P_2(x) \Leftrightarrow P_1(x) = P_2(x)$$

Exercícios Resolvidos

1) O valor numérico da expressão $2x^3 - x^2 + \frac{x}{2} - 1$ para

$x = \sqrt{3} \text{ \'e}$ Resolução:

Sendo P(x) = $2x^3 - x^2 + \frac{x}{2} - 1$, temos:

$$P(\sqrt{3}) = 2.\sqrt{3}^3 - \sqrt{3}^2 + \frac{\sqrt{3}}{2} - 1$$

$$P(\sqrt{3}) = 6\sqrt{3} - 3 + \frac{\sqrt{3}}{2} - 1$$

$$P(\sqrt{3}\,) = \frac{12\sqrt{3} - 6 + \sqrt{3} - 8}{2}$$

$$P(\sqrt{3}) = \frac{13\sqrt{3} - 8}{2}$$

2) Os números reais a, b, c e d são tais que, para todo x real,

$$ax^3 + bx^2 + cx + d = (x^2 + x - 2)(x - 4) - (x + 1)(x^2 - 5x + 3)$$

Desse modo, o valor de b + d é:

Resolução:

$$ax^{3} + bx^{2} + cx + d = (x^{2} + x - 2)(x - 4) - (x + 1)(x^{2} - 5x + 3)$$

$$ax^{3} + bx^{2} + cx + d = x^{3} - 4x^{2} + x^{2} - 4x - 2x + 8 - x^{3} + 5x^{2} - 3x - x^{2} + 5x - 3$$

$$ax^{3} + bx^{2} + cx + d = 0x^{3} + x^{2} - 4x + 5$$

b=1 e d=5

Logo: b+d=6

Comparando temos:

Exercícios

- **01)** Considere o polinômio $P(x) = x^3 2x^2 + 4x 8$, determine o valor de:
 - a) P(1)
 - b) P(3)
 - c) P(2i)
- **02)** Para que os polinômios $P(x) = (a-2)x^3 + (1-b)x + c 3$ e $Q(x) = 2x^3 + (3+b)x - 1$ sejam idênticos, os valores de a, b e c devem ser, respectivamente:
 - a) 4, 1 e 2
 - b) -4, 1 e 2
 - c) 4, -1 e 2
 - d) 4, 1 e 2
 - e) 2, 4 e 1
- 03) (PUC RJ) Sabendo que 1 é raiz do polinômio $p(x) = 2x^3 ax^2 2x, \text{ podemos afirmar que } p(x) \text{ é igual a:}$
 - a) $2x^2(x-2)$
 - b) 2x(x-1)(x+1)
 - c) $2x(x^2-2)$
 - d) x(x-1)(x+1)
 - e) $x(2x^2-2x-1)$
- **04)** (UECE CE) O termo independente de x no desenvolvimento da expressão algébrica $(x^2-1)^3 \cdot (x^2+x+2)^2$ é
 - a) 4.
 - b) -4.
 - c) 8.
 - d) -8.

- **05)** Considere $P(x) = 2x^3 + bx^2 + cx$, tal que P(1) = -2 e P(2) = 6. Assim, os valores de b e c são, respectivamente,
 - a) 1 e 2
 - b) 1 e -2
 - c) -1 e 3
 - d) -1 e -3
- **06)** (UECE CE) Considerando o polinômio $P(x)=4x^3+8x^2+x+1, \ \ \text{\'e correto afirmar que o}$ valor da soma $P(-1)+P\left(-\frac{1}{3}\right) \ \ \text{\'e um n\'umero}$ localizado entre
 - a) 5,0 e 5,5.
 - b) 4,0 e 4,5.
 - c) 4,5 e 5,0.
 - d) 5,5 e 6,0.
- 07) (UFPE PE) Sabendo que $\frac{x^2-2x+4}{x^3+x^2-2x} = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{x-1}, \text{ assinale}$ A+B+2C.
- 08) (MACK SP) Os valores de R, P e A para que a igualdade $\frac{2x^2+5x-1}{x^3-x}=\frac{R}{x}+\frac{P}{x+1}+\frac{A}{x-1} \text{ seja uma}$ identidade são, respectivamente,
 - a) 3,1 e -2
 - b) 1, -2 e 3
 - c) 3, -2 e 1
 - d) 1, 3 e -2
 - e) -2,1 e 3

- 09) (UFRGS RS) A soma dos coeficientes do polinômio $P(x) = (1-x+x^2-x^3+x^4)^{1.000} \ \acute{e}$
 - a) 1.
 - b) 5.
 - c) 100.
 - d) 500.
 - e) 1.000.
- 10) (UDESC SC) Seja p(x) um polinômio de grau três tal que p(0) = 6, p(1) = 1, p(2) = 4 e p(3) = 9. É correto afirmar que p(4) é igual a:
 - a) 0
 - b) 16
 - c) 10
 - d) 14
 - e) 8
- **11)** (UFPR PR) O processo de encontrar um polinômio cujo gráfico passa por um determinado conjunto de pontos é chamado interpolação polinomial, e o polinômio obtido nesse processo é conhecido como polinômio interpolador.
- a) Verifique se $p(x)=x^2+2x-3$ é polinômio interpolador para os pontos $P_1(-2,-3), P_2(0,-3)$ e $P_3(1,0)$.
- b) Encontre $a,b,c,d\in\mathbb{R}$ tais que $q(x)=ax^3+bx^2+cx+d \text{ seja polinômio interpolador}$ para os pontos $Q_1(-2,8),Q_2(-1,1),Q_3(1,-4)$ $Q_4(2,-8).$

GABARITO – AULA 01

1) 2) c 3) b 4) b 5) d 6) a 7) 02 8) b 9) a 10) c 11)

a) Tem-se que

$$p(-2) = (-2)^2 + 2 \cdot (-2) - 3 = -3,$$

$$p(0) = -3$$

е

$$p(1) = 1^2 + 2 \cdot 1 - 3 = 0.$$

Em consequência, $p(x) = x^2 + 2x - 3$ é polinômio interpolador dos pontos dados.

b) Se q(x) é um polinômio interpolador dos pontos Q_1, Q_2, Q_3 e Q_4 , então

$$\begin{cases} a \cdot (-2)^3 + b \cdot (-2)^2 + c \cdot (-2) + d = 8 \\ a \cdot 2^3 + b \cdot 2^2 + c \cdot 2 + d = -8 \end{cases} \Leftrightarrow \begin{cases} -8a + 4b - 2c + d = 8 \\ 8a + 4b + 2c + d = -8 \end{cases}$$

Somando essas duas equações, obtemos d = -4b. Ademais, temos

$$\begin{cases} a \cdot (-1)^3 + b \cdot (-1)^2 + c \cdot (-1) + d = 1 \\ a \cdot 1^3 + b \cdot 1^2 + c \cdot 1 + d = -4 \end{cases} \Leftrightarrow \begin{cases} -a + b - c + d = 1 \\ a + b + c + d = -4 \end{cases}.$$

Somando, encontramos 2b + 2d = -3. Logo, segue que $b = \frac{1}{2}$ e d = -2.

Finalmente, das duas últimas equações de cada um dos sistemas anteriores, vem

$$\begin{cases} 4a + c = -4 \\ a + c = -\frac{5}{2} \iff a = -\frac{1}{2} \ e \ c = -2. \end{cases}$$

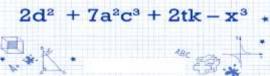
A resposta é, portanto, $a = -\frac{1}{2}$, $b = \frac{1}{2}$, c = -2 e d = -2.

AULA 02

POLINÔMIOS – OPERAÇÕES

1. Operações com Polinômios

OPERAÇÕES COM POLINÔMIOS



4.1. Adição e Subtração

Para somarmos ou subtrairmos dois ou mais polinômios, basta somarmos ou subtrairmos os coeficientes dos termos de mesmo grau.

Acompanhe abaixo o exemplo:

1) Dados $P_1(x) = 3x^2 + 12x + 8 e P_2(x) = 4x^2 + 9x + 2$. Obtenha $P_1(x) + P_2(x)$.

Resolução: Chamando de $P_3(x)$ o polinômio $P_1(x) + P_2(x)$, temos:

$$P_3(x) = P_1(x) + P_2(x)$$

$$P_3(x) = 3x^2 + 12x + 8 + 4x^2 + 9x + 2$$

$$P_3(x) = (3+4)x^2 + (12+9)x + (8+2)$$

$$P_3(x) = 7x^2 + 21x + 10$$

2) Dados
$$P_1(x) = 3x^2 + 12x + 8 e P_2(x) = 4x^2 + 9x + 2$$
.
Obtenha $P_1(x) - P_2(x)$.

Resolução: Chamando de $P_4(x)$ o polinômio $P_1(x) - P_2(x)$, temos:

$$P_4(x) = P_1(x) - P_2(x)$$

$$P_4(x) = 3x^2 + 12x + 8 - (4x^2 + 9x + 2)$$

$$P_4(x) = (3 - 4)x^2 + (12 - 9)x + (8 - 2)$$

$$P_4(x) = -x^2 + 3x + 6$$

4.2. Multiplicação

$$(a+b) \cdot (c+d) = ac + ad + bc + bd$$

A multiplicação de dois polinômios é dada multiplicandose cada termo de um deles por todos os termos do outro, e em seguida somamos os termos de mesmo grau. Observe o exemplo abaixo:

Dados
$$P_1(x) = 2x^2 + 5x + 3 e P_2(x) = x^3 + 2x$$
. Obtenha $P_1(x).P_2(x)$.

Resolução: Chamando de $P_4(x)$ o polinômio $P_1(x).P_2(x)$, temos:

$$P_{4}(x) = P_{1}(x).P_{2}(x)$$

$$P_{4}(x) = (2x^{2} + 5x + 3).(x^{3} + 2x)$$

$$P_{4}(x) = 2x^{2}.(x^{3} + 2x) + 5x.(x^{3} + 2x) + 3.(x^{3} + 2x)$$

$$P_{4}(x) = 2x^{5} + 4x^{3} + 5x^{4} + 10x^{2} + 3x^{3} + 6x$$

$$P_{4}(x) = 2x^{5} + 5x^{4} + 7x^{3} + 10x^{2} + 6x$$

O grau do produto de dois polinômios é a soma dos graus de $P_1 e P_2(x)$ desde que $P_1 e P_2(x)$ não sejam nulos.

2. Divisão

Dados os polinômios A(x) (dividendo) e B(x) (divisor), com B(x) não identicamente nulo. Dividir A(x) por B(x) significa determinar os polinômios Q(x) (quociente) e R(x) (resto), tais que:

$$A(x) \equiv B(x).Q(x) + R(x)$$

Esquematicamente:

$$\frac{A(x)}{R(x)} \stackrel{B(x)}{=} \Rightarrow A(x) \equiv B(x) \cdot Q(x) + R(x)$$

gr(R) < gr(D) ou $R(x) \equiv 0$

OBSERVAÇÕES:

- O grau de Q(x) é a diferença entre os graus de A(x) e de B(x), ou seja gr(Q) = gr(A) gr(B)
- Se R(x) for um polinômio nulo, dizemos que A(x) é divisível por B(x), dizemos então, que a divisão é exata.

$$\begin{array}{c|c} \text{Dividendo} & \longleftarrow & A(x) \\ \text{Resto} & \longleftarrow & R(x) \\ \end{array} \begin{array}{c} B(x) \longrightarrow \text{Divisor} \\ Q(x) \longrightarrow \text{Quociente} \end{array}$$

Dividendo = divisor · quociente + resto

Veremos nesse módulo a que a divisão de dois polinômios pode ser feita por dois métodos: o método da chave e o método de Descartes.

Método da chave (Algoritmo de Euclides)

Para dividir dois polinômios pelo método da chave, devemos seguir os seguintes procedimentos:

- 1) Ordenar os polinômios A(x) (dividendo) e B(x) (divisor) segundo as potências decrescentes de x e se necessário completá-los com termos de coeficiente zero.
- 2) Dividi-se o primeiro termo de A(x) pelo primeiro de B(x), obtendo o primeiro termo de Q(x).
- 3) Multiplica-se o termo obtido pelo divisor A(x) e subtraise de P(x)
- **4)** Continua-se o processo até que haja um resto de grau inferior que o de B(x) ou resto nulo.

Observe o exemplo abaixo:

Exemplo: Determinar o quociente e o resto da divisão de $A(x) = 4x^3 - x^2 - x + 2$ por B(x) = x + 1

Resolução:

Observe os procedimentos para resolver essa divisão:

1) Dividimos o termo de maior grau do dividendo $\left(4x^3\right)$ pelo termo de maior grau do divisor $\left(x\right)$, obtendo o primeiro termo do quociente $\left(4x^2\right)$.

$$4x^3 - x^2 - x + 2$$
 | $x + 1$

 $4x^2$

2) Multiplicamos o termo obtido no quociente parcial $\left(4x^{2}\right)$ por todos os termos do divisor e subtraímos esse produto do dividendo.

$$\underbrace{4x^3 - x^2 - x + 2}_{4x^3 + 4x^2} \underbrace{ \begin{array}{c} x + 1 \\ 4x^2 \end{array}}_{0x^3 - 5x^2 - x + 2}$$

3) O resto parcial obtido $\left(-5x^2-x+2\right)$ não apresenta ainda grau menor do que o divisor, logo repetimos o processo. Multiplicamos o termo obtido no quociente parcial $\left(-5x\right)$ por todos os termos do divisor e subtraímos esse produto do dividendo.

4) E seguimos com o mesmo processo novamente:

Observe que:

$$\underbrace{4x^3-x^2-x+2}_{\text{dividendo}} = \underbrace{\left(4x^2-5x+4\right)}_{\text{quociente}}.\underbrace{\left(x+1\right)}_{\text{divisor}} - \underbrace{2}_{\text{resto}}$$

Exercícios

- **01)** Obtenha o quociente e o resto da divisão de $P(x) = 6x^5 + 3x^4 + 5x^3 2x^2 4x + 5 \qquad \text{por}$ $D(x) = 3x^3 2x \text{ \'e}$
- **02)** (UERN RN)
 - Divisor: $x^2 + x$;
 - Resto: 1-7x; e,
 - Quociente: $8x^2 8x + 12$.

Logo, o dividendo dessa operação é

- a) $8x^4 + 4x^2 + 5x + 1$.
- b) $6x^4 + 4x^2 + 4x + 3$.
- c) $8x^4 + 4x^2 + 4x + 1$.
- d) $6x^4 + 8x^2 + 5x + 1$.
- 03) (ESPCEX) O polinômio $f(x)=x^5-x^3+x^2+1$, quando dividido por $q(x)=x^3-3x+2$ deixa resto r(x).

Sabendo disso, o valor numérico de r(-1) é

- a) -10.
- b) -4.
- c) 0.
- d) 4.
- e) 10.
- 04) (UEG GO) Na divisão do polinômio $6x^4-2x^3-8x^2+10x-2 \text{ pelo divisor } x^2+3x-2,$ o resto multiplicado por 2 é
 - a) $-222x^2 + 252$
 - b) $444x^2 + 252$
 - c) -444 x + 252
 - d) 222x + 252
 - e) $-444x^2 252$

- **05)** (UFJF MG) Dados dois polinômios $A(x) \in B(x)$, sabe-se que S(x) = A(x) + B(x) é um polinômio de grau 8 e que D(x) = A(x) B(x) é um polinômio de grau 5 . É correto afirmar:
 - a) O polinômio W(x) = B(x) A(x) tem grau 8.
 - b) Os polinômios A(x) e B(x) têm o mesmo grau.
 - c) O polinômio $C(x) = A(x) \cdot B(x)$ tem grau 13.
 - d) O polinômio A(x) tem grau 5.
 - e) O grau do polinômio B(x) é menor que 7.
- 06) (UNIOESTE PR) Se o número real a é raiz do polinômio P(x) e o número real b é raiz do polinômio Q(x), então é CORRETO afirmar que
 - a) (a+b) é raiz de P(x)+Q(x).
 - b) a e b são raízes de P(x) + Q(x).
 - c) (ab) é raiz de P(x)Q(x).
 - d) a e b são raízes de P(x)Q(x).
 - e) (a+b) é raiz de P(x)Q(x).
- 07) (UFSC SC) Os números "m" e "n" são tais que o polinômio $x^4 3x^3 11x^2 + mx + n$ é divisível por $x^2 3$. O valor de m + n é:
- **08)** (UPF RS) Se o polinômio $P(x) = x^4 2x^2 + mx + p$ é divisível por $D(x) = x^2 + 1$, o valor de m - p é:
 - a) -3
 - b) -1
 - c) 0
 - d) 2
 - e) 3

Wivel 3

- **09)** (UECE CE) O resto da divisão de $(x^2 + x + 1)^2$ por $x^2 x + 1$ é
 - a) 4x.
 - b) 4(x-1).
 - c) 4(x-2).
 - d) 4(x-3).

10) (UFJF - MG) Qual é o polinômio que ao ser multiplicado por $g(x)=3\,x^3+2x^2+5x-4$ tem como resultado o polinômio $h(x)=3\,x^6+11x^5+8x^4+9x^3-17x^2+4x\,?$

a)
$$x^3 + x^2 + x$$
.

- b) $x^3 + x^2 x$.
- c) $x^3 + 3x^2 + x$.
- d) $x^3 + 3x^2 + 2x$.
- e) $x^3 + 3x^2 x$.

GAB	ARITO -					
1) *	2) a	3) a	4) c	5) b	6) d	7) 33
010	0) h	10\ 0	11\		700	

1)

$$6x^{5} + 3x^{4} + 5x^{3} - 2x^{2} - 4x + 5 \quad \frac{3x^{3} - 2x}{2x^{2} + x + 3}$$

$$\frac{-6x^{5} + 4x^{3}}{3x^{4} + 9x^{3} - 2x^{2} - 4x + 5}$$

$$\frac{-3x^{4} + 2x^{2}}{9x^{3} - 4x + 5}$$

$$\frac{-9x^{3} + 6x}{2x + 5}$$

Pelo esquema observe que o quociente é $Q(x) = 2x^2 + x + 3$ e o resto é R(x) = 2x + 5

POLINÔMIOS – DIVISÃO – BRIOT – RUFINI – TEOREMA DO RESTO

Nessa aula apresentamos algumas ferramentas importantes para facilitar o processo de alguns casos de divisão de polinômios. Bons estudos!

1. Teorema do resto

O resto da divisão de um polinômio A(x) por um binômio do tipo ax + b é o valor numérico de A(x) para $x = -\frac{b}{a}$, ou

seja
$$P\left(-\frac{b}{a}\right)$$
.

Observe que $-\frac{b}{a}$ é a raiz de ax+b.

Esse teorema permite que se ache o resto de uma divisão, sem que haja a necessidade de aplicar o método da chave ou o método de Descartes.

Observe a demonstração desse teorema:

$$A(x) = (ax + b). Q(x) + r$$

$$A\left(-\frac{b}{a}\right) = \left[a\left(-\frac{b}{a}\right) + b\right] + r$$

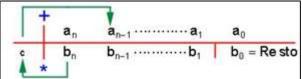
$$\therefore A\left(-\frac{b}{a}\right) = r$$

2. Teorema de D'alembert

Um polinômio A(x) é divisível por B(x) = ax + b se, e somente se, $P\left(-\frac{b}{a}\right) = 0$.

Veja, por exemplo, que o polinômio $A(x) = x^3 - 3x + 2$ é divisível por B(x) = x + 2 pois P(-2) = 0.

3. Dispositivo de Briot-Ruffini



O dispositivo de Briot-Ruffini, também conhecido como algoritmo de Briot-Ruffini, é um modo prático para dividir um polinômio P(x) por um binômio da forma x – a . Vamos apresentar esse processo através de um exemplo.

Determine o quociente e o resto da divisão da divisão de $A(x) = 2x^3 - x^2 + 4x - 1$ por x - 3

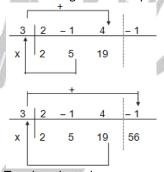
1º Passo: Dispõem-se todos os coeficientes de A(x) de forma ordenada e segundo os expoentes decrescentes de x na chave.

2º Passo: Coloca-se à esquerda a raiz do divisor.

3º Passo: Abaixa-se o primeiro coeficiente de P(x)

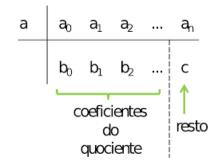
4º Passo: Multiplica-se o coeficiente baixado pela raiz, somando o resultado com o próximo coeficiente de P(x) e o resultado abaixo desse último

5º Passo: Multiplica-se o esse último resultado pela raiz e soma-se o resultado com o próximo coeficiente de P(x) de forma análoga ao último passo, e assim sucessivamente.



Terminando assim o processo, temos:

Como gr(Q) = 2 [gr(A) - gr(B)] temos que Q(x) = $2x^2 + 5x + 19$ e resto R(x) = 56



IMPORTANTE: Por esse método se o polinômio DIVIDENDO estiver incompleto, então coloca-se zero no coeficiente do termo faltoso.

EXERCÍCIOS RESOLVIDOS

1) Determinar o resto da divisão do polinômio $A(x) = 2x^2 + 3x + 1$ B(x) = x - 3.

Resolução: A raiz do divisor é dada por: $x-3=0 \rightarrow x=3$

Logo: Resto =
$$A(3) = 2.3^2 + 3.3 + 1 \rightarrow A(3) = 28$$

2) Determinar o valor de m de modo que o polinômio $A(x) = x^3 - x^2 + mx - 12$ seja divisível por B(x) = x - 3.

Resolução: Para que A(x) seja divisível por x-3, devemos impor que: A(3) = 0.

$$A(x) = x^3 - x^2 + mx - 12$$

$$A(3) = 3^3 - 3^2 + m.3 - 12$$

$$0 = 27 - 9 + 3m - 12 \rightarrow m = -2$$

3) . Qual o valor de \underline{m} para que o polinômio $x^3 + 2x^2 - 3x + m$ ao ser dividido por x + 1, deixe resto 3?

Resolução:

Pelo teorema do resto, P(- 1) deve ser igual a 3. Substituindo, temos:

$$\int P(-1) = (-1)^3 + 2 \cdot (-1)^2 - 3(-1) + m$$

$$P(-1) = 3$$

$$-1+2+3+m=3$$

$$4+m=3$$

$$m = -1$$

Outro método:

Utilizando o dispositivo de Briot-Ruffini, temos:

Como o resto deve ser 3, temos:

$$4 + m = 3$$

$$m = 3 - 4 = -1$$
.

Exercícios

- **01)** O quociente e o resto da divisão do polinômio $x^2 + x 1$ pelo binômio x + 3 são, respectivamente:
 - a) x 2 e 5
 - b) x+2 e 6
 - c) x 3 e 2
 - d) x + 1 = 0
 - e) x 1 e 2
- 02) (UPF RS) Considere o polinômio $P(x) = 4x^3 x^2 (5+m)x + 3.$

Sabendo que o resto da divisão de P pelo monômio x+2 é 7, determine o valor de m.

- a) 0
- b) 15
 - c) 2
 - d) 7
 - e) 21
- 03) (UPF RS) O resto da divisão do polinômio $p(x) = x^{n} + x + 2 \text{ pelo polinômio } q(x) = x 1 \text{ \'e}$
 - a) 2
 - b) 0
 - c) 4
 - d) -1
 - e) -2
- **04)** (UFJF MG) O resto da divisão do polinômio $p(x) = x^{10} 1$ pelo polinômio $q(x) = x 2^{0.2}$ é:
 - a) 0.
 - b) 1.
 - c) 2.
 - d) 3.
 - e) 4.

- **05)** (ESPECEX) Dividindo-se o polinômio $P(x) = 2x^4 5x^3 + kx 1 \text{ por } (x-3) \text{ e } (x+2),$ os restos são iguais. Neste caso, o valor de k é igual a
 - a) 10. b) 9. c) 8. d) 7. e) 6.
- 06) (UNESP SP) Considere os polinômios $p(x) = \begin{vmatrix} x & 1 & 0 \\ 2 & x & -1 \\ m & x & x \end{vmatrix} e \ q(x) = \begin{vmatrix} 1 & 3 \\ 1 & x \end{vmatrix}.$

Para que p(x) seja divisível por q(x), é necessário que m seja igual a

a) 30. b) 12. c) -12. d) -3. e) -30.

Mivel 3

- 07) (UNICAMP SP) Considere o polinômio $p(x)=x^n+x^m+1, \ \text{em que } n>m\geq 1. \ \text{Se o resto da}$ divisão de p(x) por x+1 é igual a 3, então
 - a) n é par e m é par.
 - b) n é ímpar e m é ímpar.
 - c) n é par e m é ímpar.
 - d) n é ímpar e m é par.
 - **08)** (UEM PR) Sobre polinômios de coeficientes reais, assinale o que for correto.
 - 01) O quociente da divisão de $p(x) = x^3 + x^2 3x 27$ por q(x) = x - 3 é um polinômio de grau 2.
 - 02) Os polinômios $p(x) = 2x^2 4x + 2$ e $q(x) = (x-1)^2$ são idênticos, pois possuem as mesmas raízes.
 - 04) Um polinômio de grau 3 sempre possui três raízes reais.
 - 08) Ao multiplicarmos o polinômio $p(x) = x^3 + x 1$ por $q(x) = -x^3 x + 1$, obtemos um polinômio de grau 6.
 - 16) O resto da divisão $p(x) = x^3 + 2x^2 x + 1$ por q(x) = x 2 é 15.

GABARITO – AULA 03

- 1) a 2) b 3) c 4) d
- 5) b 6) a 7) a 8) 25

AULA 04

POLINÔMIOS – COMPLEMENTOS

Teorema das Divisões Sucessivas

Se um polinômio A(x) é divisível por (x-a) e por (x-b), com $a \ne b$, então P(x) é divisível por (x-a)(x-b).

Demonstração:

Se A(x) é divisível por (x-a) e por (x-b), então: P(a)=0 e P(b)=0

R(x) Q(x)

$$A(x) = (x-a)(x-b) + mx + n$$

Fazendo x = a e em seguida x = b, temos:

$$A(a) = (a-a)(a-b)+m.a+n \rightarrow A(a) = m.a+n$$

 $A(b) = (b-a)(b-b)+m.b+n \rightarrow A(b) = m.b+n$

Devemos impor: m.a+n=0 e m.b+n=0

Resolvendo o sistema: $\begin{cases} m.a+n=0\\ m.b+n=0 \end{cases}, \text{ vem } m=0 \text{ e } n=0 \text{ .}$

Então: $R(x) = mx + n \rightarrow R(x) \equiv 0$

Podemos facilmente demonstrar esse teorema para n fatores do 1º grau.

Exercício Resolvido:

Determine **m** e **n**, de tal forma que o polinômio $A(x) = 2x^3 + mx^2 + nx - 1$ seja divisível por (x-1)(x+1).

Resolução: Se A(x) é divisível por (x-1)(x+1), então A(x) é divisível separadamente por (x-1)e(x+1), logo:

$$\begin{split} & A(1) = 0 \Longrightarrow A(1) = 2.1^3 + m.1^2 + n.1 - 1 = 0 \Longrightarrow m + n = -1 \\ & A(-1) = 0 \Longrightarrow A(-1) = 2.(-1)^3 + m.(-1)^2 + n.(-1) - 1 = 0 \Longrightarrow m - n = 3 \\ & \text{Resolvendo o sistema} \ \begin{cases} m + n = -1 \\ m - n = 3 \end{cases}, \ \text{temos:} \ m = 1 \ e \ n = -2 \end{split}$$

- 01) (UFSC SC) Um polinômio P(x) dividido por (x + 1) dá resto 3 e por (x - 2) dá resto 6. O resto da divisão de P(x) pelo produto (x + 1).(x - 2) é da forma ax + b, com a, $b \in R$. O valor numérico da expressão a + b é:
- **02)** (FGV SP) Dividindo-se um polinômio P(x) por x-2, Obtém-se resto 6. Dividindo-se o mesmo polinômio por x+2, obtém-se resto 10. Então, o resto da divisão de P(x) por (x-2)(x+2) e:
 - a) 0
- b) 8 x c) 16 + x
 - d) x 4
- e) x 6
- 03) (ACAFE SC) Determine p e q de tal forma que o polinômio $x^3 + px + q$ seja simultaneamente divisível por x-1ex+1.
 - a) p = 2 e q = 3
 - b) p = 3 e q = -2
 - c) p = -1 e q = 0
 - d) p = 0 e q = -1
 - e) p = 0 e q = 1
- **04)** (UEL PR) O resto da divisão de um polinômio P(x) por (x-2) é 7 e o resto da divisão de P(x) por (x+2) é -1. Desse modo, o resto da divisão de P(x) por (x-2)(x+2) é

- a) 6 b) 8 c) 7x-1 d) 2x+3 e) 3x+2
- 05) (Mack-SP) Um polinômio desconhecido ao ser dividido por x - 1 deixa resto 2 e ao ser dividido por x - 2 deixa resto 1. Então, o resto da divisão desse polinômio por (x - 1) (x - 2) é:
 - a) x 3
 - b) -x + 3
 - c) x + 3
 - d) x-5
 - e) -x + 5

- 06) (UERN RN) Qual é o valor de m + n, para que o resto da divisão de $x^3 + mx^2 + nx - 10$ por $x^2 - x - 2$ seja igual a zero?
 - a) 8
 - b) -5
 - c) 4
 - d) -3
- **07)** (UEG) A divisão do polinômio $x^3 + 2x^2 5x 6$ por (x+1)(x-2) é igual a:

- a) x 3
- b) x + 3
- c) x 6
- **08)** (UNESP SP) O polinômio $P(x) = a \cdot x^3 + 2 \cdot x + b$ é divisível por x - 2 e, quando divisível por x + 3, deixa resto -45. Nessas condições, os valores de a e b, respectivamente, são
 - a) 1 e 4.
 - b) 1 e 12.
 - c) -1 e 12.
 - d) 2 e 16.
 - e) 1 e –12.

Wivel 3

- 09) (UDESC SC) Um polinômio p(x) dividido por x+1deixa resto 16; por x-1 deixa resto 12, e por Xdeixa resto -1. Sabendo que o resto da divisão de p(x) por (x+1)(x-1)x é da forma $ax^2 + bx + c$, então o valor numérico da soma das raízes do polinômio $ax^2 + bx + c$ é:
 - 5
 - b)
 - c) 15
 - d)
 - e)
- 10) (UFBA BA) Sobre polinômios, pode-se afirmar:
 - 01. O resto da divisão do $P(x) = x^{64} + 2x^{32} + 3x^{16} + x^8 + x^4 + x^2 + x \text{ por } x - 1 \text{ \'e}$ igual a 6.
 - 02. Dividindo-se o polinômio p(x) pelo polinômio g(x), obtém-se quociente q(x) e resto r(x); então, o grau de r(x) é menor do que o grau de g(x).
 - $P(x) = 4x^5 + ax^4 + 2x^3 x^2$ $g(x) = bx^5 + 2x^4 + cx^3 + x^2 e$ para todo x. p(x) + q(x) = 0, tem-se que a.b. $|c| = 2^4$.
 - 08. Sendo m o grau dos polinômios p(x) e q(x), então o grau do polinômio p(x) + q(x) é igual a m.
 - 16. A soma de todos os zeros do polinômio $P(x) = x^4 - 4x^3 + 5x^2$ pertence ao intervalo [0, 5].
 - 32. Se $P(x) = x^3 ax^2 + bx + 2e$ $q(x) = ax^3 bx^2 3x 1$ são tais que p(1) = 5 e q(-1) = 4, então $(a + b)^2 = 2$.

GABARITO - AULA 04

- 1) 05 2) b
- 3) c
- 4) d 5) b
- 6) d 7) b
- 8) e
- 9) c
 - 10) 06

EQUAÇÕES POLINOMIAS – PARTE I

1. Definição

Equação algébrica é toda equação da forma:

$$P(x) = a_n.x^n + a_{n-1}.x^{n-1} + + a_2.x^2 + a_1.x + a_0 = 0$$

onde: $a_n, a_{n-1}, \dots, a_2, a_1 e a_0$ são números complexos ditos coeficientes, n é um número natural $(n \in N)$, x é a variável complexa. A maior potência de x (n) é o grau da equação desde que $a_n \neq 0$.

2. Raízes da equação algébrica

Raiz da equação algébrica P(x) = 0 é todo número $\alpha \in C$, tal que $P(\alpha) = 0$.

Exemplos:

Os valores 3 e 7 são raízes da equação polinomial $x^2 - 10x + 21 = 0$, pois:

$$3^2 - 10.30 + 21 = 0$$
, e $7^2 - 10.7 + 21 = 0$

Em muitos exercícios dessa aula podemos encontrar as raízes de equações algébricas através da fatoração. Veja um exemplo abaixo:

Resolver a equação $x^3 - 4x^2 + 3x - 12 = 0$, considerando U = C.

Resolução:

$$x^3 - 4x^2 + 3x - 12 = 0$$

$$\underbrace{x^3 - 4x^2}_{X^2(\text{fator comum})} + \underbrace{3x - 12}_{3 \text{ (fator comum)}} = 0$$

$$\underbrace{x^2(x-4) + 3(x-4)}_{x-4 \text{ (fator comum)}} = 0$$

$$(x-4)(x^2+3)=0$$

$$x-4=0$$
 ou $x^2+3=0$

$$x = 4$$
 ou $x = -\sqrt{3}i$ ou $x = \sqrt{3}i$

Portanto: $S = \left\{4, -\sqrt{3}i, \sqrt{3}i\right\}$

- **01)** Resolver a equação $x^3 8x^2 + 7x = 0$, considerando U = C.
- 02) (PUC RJ) A maior das raízes da equação $x^3 - 4x^2 + 3x = 0$ vale:
 - a) 0 b) 1
- c) 2
- d) 3
- 03) Determine а maior raiz equação $x^3 - 3x^2 - 4x + 12 = 0$.
- 04) (UFRGS RS) As raízes do polinômio $p(x) = x^3 + 5x^2 + 4x \text{ são}$
 - a) -4, -1 e 0.
 - b) -4, 0 e 1.
 - c) -4, 0 e 4.
 - d) -1, 0 e 1.
 - e) 0,1 e 4.

- **05)** Determine a única real da raiz equação $3x^3 + 6x^2 + 12x + 24 = 0$.
- 06) Uma fábrica utiliza dois tanques para armazenar óleo diesel. Os níveis, N₁ e N₂, dos tanques são dados pelas expressões:

$$N_1(t) = 20t^3 - 10t + 20 e N_2(t) = 12t^3 + 8t + 20$$

Sendo t o tempo em horas.

O nível do óleo de um tanque é igual ao do outro no instante inicial t = 0 e também no instante:

- a) t = 0.5 h
- b) t = 1,0 h
- c) t = 2.5 h
- d) t = 2.0 h
- e) t = 1.5 h
- **07)** (FGV SP) O produto de 3 números inteiros positivos e consecutivos é igual a 8 vezes a sua soma. A soma dos quadrados desses 3 números é igual a
 - a) 77.
 - b) 110.
 - c) 149.
 - d) 194.
 - e) 245.

Wivel 3

08) (UNIOESTE – PR) Considere o polinômio $p(x) = \det A$, onde

$$A = \begin{bmatrix} x & 2x & -x \\ -13 & 2x^2 & 15 \\ 0 & 2x & \frac{1}{2} \end{bmatrix}.$$

Se x_1 , x_2 e x_3 são as raízes de p(x) e $a = x_1 + x_2 + x_3$, então é correto afirmar que a é igual

- a) 4.
- b) 0.
- c) 2 + 3i.
- d) 2+6i.
- e) -13.
- **09)** (AFA) Sobre o polinômio A(x) expresso pelo determinante da matriz $\begin{bmatrix} x & 1 & 1 \\ 1 & x & -2 \\ 1 & x & x \end{bmatrix}$, é incorreto

afirmar que

- a) não possui raízes comuns com $B(x) = x^2 1$.
- b) não possui raízes imaginárias.
- c) a soma de suas raízes é igual a uma de suas raízes.
- d) é divisível por P(x) = x + 2.

10) (UFPR – PR) Considere o polinômio
$$p(x) = \begin{vmatrix} 3 & x & -x \\ 3 & x & -4 \\ x & 3 & -3 \end{vmatrix}$$

Calcule as raízes de p(x). Justifique sua resposta, deixando claro se utilizou propriedades de determinantes ou algum método para obter as raízes do polinômio.

GABARITO - AULA 05

- 1) $S = \{0,1,7\}$ 2) d 3) 03 4) a 5) -2 6) e
- 4) a 5) 2 6) e 7) a 8) a 9) a
- 10) Resposta:

$$p(x) = \begin{vmatrix} 3 & x & -x \\ 3 & x & -4 \\ x & 3 & -3 \end{vmatrix}$$

Aplicando Regra de Sarrus
$$\rightarrow p(x) = \begin{vmatrix} 3 & x & -x & 3 & x \\ 3 & x & -4 & 3 & x \\ x & 3 & -3 & x & 3 \end{vmatrix} = x^3 - 4x^2 - 9x + 36$$

Portanto: (fatorando o polinômio)

$$p(x) = x^3 - 4x^2 - 9x + 36$$

$$\Rightarrow$$
 p(x) = x²(x-4)-9(x-4)

$$\Rightarrow$$
 p(x) = x² (x-4)-9(x-4)

$$\Rightarrow p(x) = (x^2 - 9)(x - 4) \Rightarrow \begin{cases} x^2 - 9 = 0 \Rightarrow x = \pm 3 \\ x - 4 = 0 \Rightarrow x = \pm 4 \end{cases}$$

EQUAÇÕES POLINOMIAS – PARTE II

1. Teorema Fundamental da Álgebra

Toda equação polinomial de grau \mathbf{n} ($n \ge 1$) tem pelo menos uma raiz complexa.

Como consequência temos que:

Toda equação polinomial de grau n pode ser escrita na forma:

$$(\mathbf{x} - \alpha_1) \cdot (\mathbf{x} - \alpha_2) \cdot (\mathbf{x} - \alpha_3) \cdot \dots \cdot (\mathbf{x} - \alpha_n) = 0$$

onde:

- $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ são as raízes de P(x)
- a_n é o coeficiente do termo de maior grau

Daí:

Toda equação de grau \mathbf{n} ($n \ge 1$) tem exatamente \mathbf{n} raízes complexas, distintas ou não.

2. Multiplicidade de uma Raiz

Denomina-se multiplicidade de uma raiz ao número de vezes que essa raiz repete no conjunto solução.

Genericamente, pode-se dizer que o número α é raiz de multiplicidade \mathbf{n} da equação polinomial P(x) = 0 se e somente se, $P(x) = (x - \alpha)^n$. Q(x), com $Q(\alpha) \neq \mathbf{0}$.

Por exemplo: Seja a equação $(x-5)^3.(x-1)^2.(x+2)=0$ Podemos escreve-la assim:

$$(x-5)(x-5)(x-5)(x-1)(x-1)(x+2)=0$$

Se pode observar que a equação possui 6 raízes, na qual:

- 5 é raiz com multiplicidade 3 (raiz tripla)
- 1 é raiz com multiplicidade 2 (raiz dupla)
- -2 é raiz de multiplicidade 1 (raiz simples)

3. Raízes Nulas

Na equação $x^3 - 6x^2 + 8x = 0$, o fator x colocado em evidência $x.(x^2 - 6x + 8) = 0$, indica a existência de uma raiz nula. Acompanhe os exemplos:

a) x.(x-6)(x+7)=0 é uma equação de grau 3 com uma raiz nula.

b) $x^2 \cdot (x-9) = 0$ é uma equação de grau 3 com duas raízes nulas.

Com base nos exemplos, podemos dizer que:

- 1) Uma equação algébrica com termo independente nulo terá uma raiz nula.
- 2) Uma equação algébrica com termo independente e coeficiente do termo de 1º grau nulos, terá duas raízes nulas e assim por diante.

EXEMPLO:

Uma das raízes da equação $x^3 - 9x^2 + 23x - 15 = 0$, é 1. Determine o conjunto solução dessa equação.

Resolução:

Aplicando o dispositivo de **Briot-Ruffini**, conseguiremos fatorar a equação:

1	1	-9	23	-15
	1	-8	15	0

$$x^{3} - 9x^{2} + 23x - 15 = 0 \Rightarrow (x - 1) \cdot (x^{2} - 8x + 15) = 0 \Rightarrow$$

 $x = 1$ ou $x = 3$ ou $x = 5$.
 $S = \{1, 3, 5\}$

Wivel 1

- **01)** A equação polinomial cujas raízes são 2, 4 e 7 é:
- **02)** (ACAFE SC) A equação polinomial cujas raízes são –2, –1 e 1 é:

a)
$$x^3 + 4x + x - 2 = 0$$

b)
$$x^3 - x - 2 = 0$$

c)
$$x^3 + 2x^2 - 3x - 2 = 0$$

d)
$$x^3 + 2x^2 - x - 2 = 0$$

e)
$$x^3 + 2x + 1 = 0$$

- **03)** Sabe-se que o número 2 é uma das raízes da equação $x^3 + 26x = 9x^2 + 24$. Assinale a alternativa **errada**.
 - a) A soma das outras raízes dessa equação é igual a menos 7.
 - b) A soma das outras raízes dessa equação é igual a 7.
 - c) As outras raízes dessa equação são 3 e 4.
 - d) O produto das outras raízes dessa equação é igual a 12.
 - e) As outras raízes dessa equação são números reais.
- **04)** Uma das raízes da equação $2x^3 + x^2 7x 6 = 0$ é x = 2. Pode-se afirmar que:
 - a) as outras raízes estão entre -2 e 0.
 - b) as outras raízes são imaginárias.
 - c) as outras raízes são 17 e –19.
 - d) as outras raízes são iguais.
 - e) só uma das outras raízes é real.

- **05)** (UNESP SP) A equação polinomial $x^3-3x^2+4x-2=0$ admite 1 como raiz. Suas duas outras raízes são
 - a) $(1+\sqrt{3}\cdot i)$ e $(1-\sqrt{3}\cdot i)$.
 - b) (1+i) e (1-i).
 - c) (2+i) e (2-i).
 - d) (-1+i) e (-1-i).
 - e) $\left(-1+\sqrt{3}\cdot i\right)$ e $\left(-1-\sqrt{3}\cdot i\right)$.
- **06)** (IFAL AL) Sabendo que x = 1 é uma raiz do polinômio $p(x) = x^3 2x^2 5x + 6 \ , \ podemos \ dizer \ então \ que p(x):$
 - a) tem três raízes reais.
 - b) tem duas raízes reais e uma imaginária.
 - c) tem uma raiz real e duas imaginárias.
 - d) não tem raiz real.
 - e) tem duas raízes reais e duas imaginárias.
- **07)** (IFAL AL) A equação $x^3 3x^2 + 7x 5 = 0$, no universo dos números complexos, tem como solução a) $\{1, 1+2i, 1-2i\}$.
 - b) $\{1, 1+i, 1-i\}$.
 - c) $\{1, 2+2i, 2-2i\}$.
 - d) $\{-1, 1+2i, 1-2i\}$.
 - e) $\{-1, 1+i, 1-i\}$.
- 08) (UFRGS RS) Considere o polinômio $p(x) = x^4 + 2x^3 7x^2 8x + 12.$

Se p(2) = 0e p(-2) = 0, então as raízes do polinômio p(x) são

- a) -2, 0, 1 e 2.
- b) -2, -1, 2 e 3.
- c) -2, -1, 1 e 2.
- d) -2, -1, 0 e 2.
- e) -3, -2, 1 e 2.

09) (EBM –SP) A culinária está em alta nos programas televisivos. Em um desses programas, os participantes foram desafiados a elaborar um prato no qual fossem utilizados, entre outros, os ingredientes A, B e C, cujas quantidades, em kg, numericamente, não excedessem às raízes do polinômio $P(x) = 8x^3 - 14x^2 + 7x - 1$.

Sabendo-se que os participantes receberam $\frac{1}{4}$ kg do ingrediente A, pode-se afirmar que as quantidades máximas que podem ser utilizadas dos ingredientes B e C diferem em

- a) 200 g
- b) 275 g
- c) 350 g
- d) 425 g
- e) 500 g
- **10)** (UNESP SP) Sabe-se que 1 é uma raiz de multiplicidade 3 da equação $x^5-3\cdot x^4+4\cdot x^3-4\cdot x^2+3\cdot x-1=0$. As outras raízes dessa equação, no Conjunto Numérico dos Complexos, são
 - a) (-1-i) e (1+i).
 - b) $(1-i)^2$.
 - c) (-i) e (+i).
 - d) (-1) e (+1).
 - e) (1-i) e (1+i).
- 11) (UFSC SC) Seja p um polinômio de grau 4 dado por $p(x) = (x+1)^4$. Com essa informação, assinale a(s) proposição(ões) CORRETA(S)
 - 01. O polinômio p é igual a $p(x) = x^4 + 4x^3 + 6x^2 + 4x + 1$.
 - 02. O único número real no qual p se anula é x = -1.
 - 04. Se k é um polinômio dado por $k(x) = x^4 + 4x^3 + 6x^2 + 4x + 3$, então o menor valor possível para o polinômio k, quando x varia em todo o conjunto dos números reais, é 2.
 - 08. O coeficiente do termo de expoente 5 do polinômio dado por $p(x) \cdot (x-1)^4$ é igual a 1.

- 12) (UEFS) Considerando-se que o polinômio $P(x) = x^3 + ax^2 + bx + c \ tem \ 1 \ como \ raiz \ dupla \ e \ 3$ como raiz simples, é correto afirmar que o resto da divisão de P(x) por (x+1) é
 - a) -20
 - b) -18
 - c) -16
 - d) -14
 - e) -2

MATE

AULA 07

EQUAÇÕES POLINOMIAS – PARTE III

1. Teorema das Raízes Imaginárias

Se o número complexo z=a+bi é raiz de uma equação algébrica de coeficientes reais, então, seu conjugado $\bar{z}=a-bi$ também será raiz dessa equação.

Consequência: Toda equação algébrica com coeficientes reais de grau ímpar terá pelo menos uma raiz real, já que as raízes complexas não reais ocorrem sempre aos pares.

2. Teorema das Raízes Racionais

Sejam p e q primos entre si. Se $\frac{p}{q}$ é uma raiz racional da equação $a_n.x^n+a_{n-1}.x^{n-1}+.....+a_2.x^2+a_1.x+a_0=0$, com $a_n,a_{n-1},....,a_2,a_1,.a_0$ inteiros, então p é divisor de a_0 e q é divisor de a_n . $(a_n \neq 0 \ e \ a_0 \neq 0)$.

Esse teorema permite determinar possíveis raízes racionais de uma equação algébrica com coeficientes inteiros.

3. Relações de Girard

As relações que serão vista nesta aula são relações estabelecidas entre os coeficientes e raízes de uma equação polinomial.

Equação do 2º grau

Sejam x_1 e x_2 as raízes da equação $ax^2 + bx + c = 0$. Valem as seguintes relações:

$$x_1 + x_2 = -\frac{b}{a}$$
$$x_1 \cdot x_2 = \frac{c}{a}$$

Equação do 3º grau

Sejam x_1 , x_2 e x_3 as raízes da equação $ax^3 + bx^2 + cx + d = 0$ Valem as seguintes relações:

$$x_{1} + x_{2} + x_{3} = -\frac{b}{a}$$

$$x_{1} \cdot x_{2} + x_{1} \cdot x_{3} + x_{2} \cdot x_{3} = \frac{c}{a}$$

$$x_{1} \cdot x_{2} \cdot x_{3} = -\frac{d}{a}$$

GABARITO - AULA 06

1) $x^3 - 9x^2 + 6x + 56 = 0$ 2) d 3) a 4) a 5)b 6) a 7) a 8) e 9) e 10) c 11) 07 12) c

Equação de grau n

Sendo x_1 , x_2 , x_3 , , x_n as raízes da equação $a_n.x^n+a_{n-1}.x^{n-1}+.....+a_2.x^2+a_1.x+a_0=0$, temos:

$$\begin{aligned} & X_1 + X_2 + X_3 + \dots + X_n = -\frac{a_{n-1}}{a_n} \\ & X_1 \cdot X_2 + X_1 \cdot X_3 + \dots + X_{n-1} \cdot X_n = \frac{a_{n-2}}{a_n} \\ & X_1 \cdot X_2 \cdot X_3 + X_1 \cdot X_2 X_4 + \dots + X_{n-2} \cdot X_{n-1} \cdot X_n = -\frac{a_{n-3}}{a_n} \\ & X_1 \cdot X_2 \cdot X_3 \cdot \dots \cdot X_n = \left(-1\right)^n \frac{a_0}{a} \end{aligned}$$

01) (UNISINOS – RS) Qual das equações abaixo tem como solução dois números cuja soma é 7 e cujo produto é -8?

a)
$$x^2 + 7x - 8 = 0$$

b)
$$x^2 - 7x + 8 = 0$$

c)
$$x^2 + 8x + 7 = 0$$

d)
$$x^2 - 8x + 7 = 0$$

e)
$$x^2 - 7x - 8 = 0$$

- **02)** A soma das raízes da equação $y = 2x^3 8x^2 6x + 7$ é igual a
 - a) -1
 - b) 4
 - c) -2
 - d) 3
 - e) 8
- **03)** (UFSC) As dimensões, em metros, de um paralelepípedo retângulo são dadas pelas raízes do polinômio $x^3 14x^2 + 56x 64$. Determine, em metros cúbicos, o volume desse paralelepípedo.
- **04)** (PUC RS) Na implementação de um sintetizador em software, relacionam-se os coeficientes de um polinômio com os controles deslizantes numa interface gráfica. Portanto, polinômios estão ligados à geração de notas musicais.
 - A soma das raízes da equação polinomial $x^3 6x^2 + 11x 6 = 0$ é
 - a) –6
 - b) 0
 - c) 3
 - d) 6
 - e) 11

Wivel 2

- **05)** Se as raízes do polinômio $P(x) = x^3 12x^2 + 47x 60 \text{ são reais, distintas e}$ formam uma progressão aritmética, então, a maior delas é:
 - a) 4 b) 5 c) 3 d) 6 e) 7
- **06)** Se a, b e c são as raízes do polinômio $P(x) = 12x^3 4x^2 3x + 1, \text{ então}:$

a)
$$a^2 + b^2 + c^2 = \frac{11}{18}$$

b)
$$a^2 + b^2 + c^2 = \frac{11}{16}$$

c)
$$a^2 + b^2 + c^2 = \frac{9}{16}$$

d)
$$a^2 + b^2 + c^2 = \frac{7}{16}$$

07) (UFJF - MG) Considere o polinômio $p(x) = x^3 - 8x^2 + 19x - 12.$

A soma dos quadrados das raízes desse polinômio é a) 12 b) 24 c) 26 d) 38 e) 64

Mivel 3

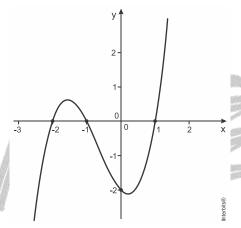
- 08) (UFSC) Assinale a(s) proposição(ões) CORRETA(S).
 - 01. O polinômio $P(x) = x^{15} 3x^3 + 3x^2 x + 1$ admite pelo menos uma raiz real.
 - 02. O resto da divisão do polinômio $P(x) = x^{72} + 3x^{60} 2x^{15} + x^{10} 2x^{5} + 1$ por $Q(x) = x + 1 \in 10$.
 - 04. O conjunto solução da equação $\sqrt{3}x+15=x-1$ no conjunto R é $S=\{7, -2\}$.
 - 08. Sejam b, c, α e β números reais, com α e β raízes da equação $x^2 bx + 2 = 0$. Se $\alpha + 1$ e $\beta + 1$ são as raízes da equação $x^2 bx + 2 = 0$, então b + c = 3.
 - 16. Para todos os números reais a e b tem-se $\sqrt{ab} = \sqrt{a} \sqrt{b}$.
- **09)** (UDESC SC) Sejam $q_1(x)$ e $r_1(x)$, respectivamente, o quociente e o resto da divisão de $f(x) = 6x^4 5x^3 + 7x^2 + 5x 11$ por $g(x) = 2x^2 + x 1$. Dividindo $q_1(x)$ por $r_1(x)$, encontram-se um novo quociente $q_2(x)$ e um novo resto $r_2(x)$. Analise as proposições e classifique (V) para verdadeira ou (F) para falsa.

- () Os polinômios g(x) e $q_2(x)$ admitem uma raiz em comum.
- () Os termos independentes de f (x) e $r_2(x)$ possuem o mesmo valor absoluto.
- () A soma das raízes de $q_1(x)$ é raiz de $r_1(x)$

Assinale a alternativa correta, de cima para baixo.

- a) F-V-V
- b) V-F-F
- c) V –V F
- d) V-F-1
- e) F-V-F
- 10) (UFSC SC) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar que:

01) Se o gráfico abaixo representa a função polinomial f, definida em \mathbb{R} por $f(x) = ax^3 + bx^2 + cx + d$, com a, b e c coeficientes reais, então f(2) = 24.



- 02) Se $f(x) = (x+2)^3 + (x-1)^3 + 5ax + 2b$, com a e b reais, é divisível por $(x+1)^2$, então a-b=1.
- 04) As raízes da equação $x^3 9x^2 + 23x 15 = 0$ estão em progressão aritmética de razão 1.
- 08) Se $f(x) = x^2 + (p-q)x$ e $g(x) + x^3 + (p+q)x^2 qx$ são divisíveis por (3-x), com p e q reais, então q-p=-3.
- 16) Os valores reais de p para que a equação $x^3-3x+p=0 \ \mbox{admita uma raiz dupla são } -2 \ \mbox{e}$ 2.

GABARITO – AULA 07

- 1) e 2) b 3) 64 4) d 5) b 6) b
- 7) c 8) 11 9) e 10) 18