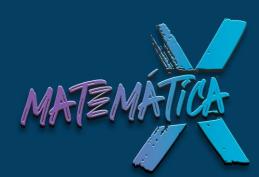
AULA

8 e 9

CONJUNTOS NUMÉRICOS

Professor Ricardinho

Matemática – Frente C



Conjunto dos números naturais (N)

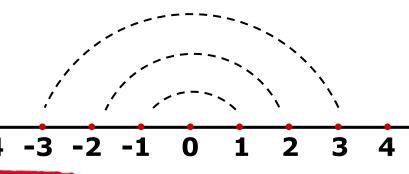
Números utilizados para contar formam o conjunto N dos números naturais, definido assim:

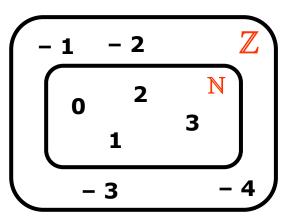
$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, ...\}$$

Conjunto dos números inteiros (Z)

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

☐ Simetria em relação ao zero.





Conjunto dos números naturais (N)

Números utilizados para contar formam o conjunto N dos números naturais, definido assim:

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, ...\}$$

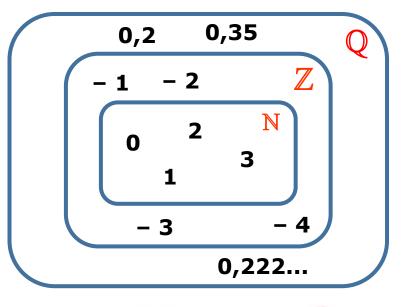
Conjunto dos números inteiros (Z)

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Conjunto dos números racionais (Q)

$$\mathbb{Q} = \{x/x = p/q; p, q \in \mathbb{Z}, q \neq 0\}$$

- ✓ Os números naturais;
- ✓ Os decimais exatos;
- ✓ Os números inteiros;
- ✓ As dízimas periódicas.



Conjunto dos números naturais (N)

Números utilizados para contar formam o conjunto N dos números naturais, definido assim:

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, ...\}$$

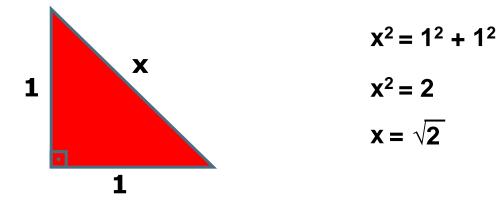
Conjunto dos números inteiros (Z)

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

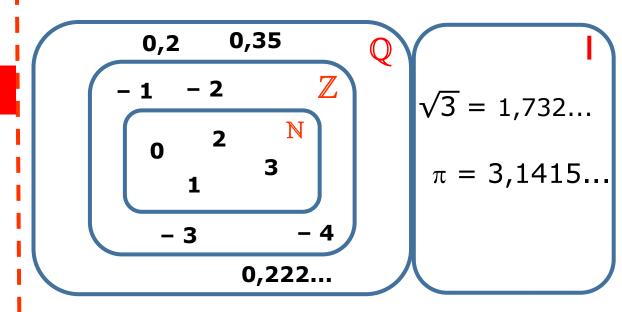
Conjunto dos números racionais (Q)

$$\mathbb{Q} = \{x/x = p/q; p, q \in \mathbb{Z}, q \neq 0\}$$

- ✓ Os números naturais;
 ✓ Os ded
- ✓ Os decimais exatos;
- ✓ Os números inteiros;
- ✓ As dízimas periódicas.

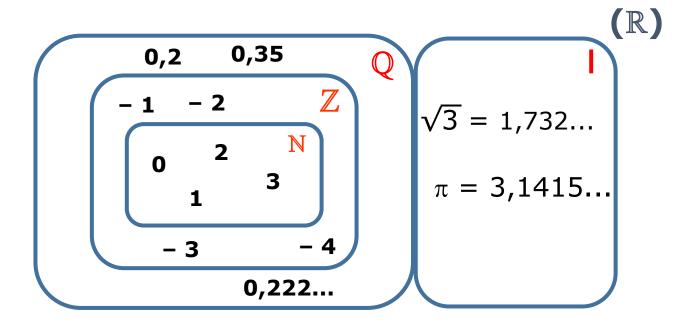


✓ Extraindo a raiz quadrada de 2 nos levará ao número 1,41421356237... que não é racional.



Conjunto dos números reais (ℝ)

□ A reunião dos racionais com os irracionais resulta no conjunto dos números reais. Ele é a partir de agora, o nosso universo numérico.



 $\mathbb{R} = \{x/x \text{ \'e racional ou irracional}\}$

Os conjuntos numéricos podem vir acompanhados de certos símbolos, que têm a função de excluir, dele, determinados números. Veja:

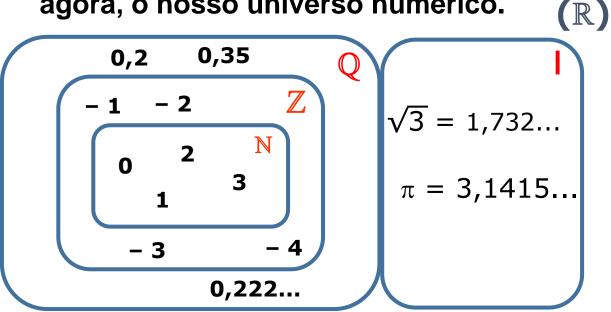
- O símbolo asterisco (*) exclui o zero;
- O símbolo mais (+) exclui os negativos;
- > O símbolo menos (-) exclui os positivos.

Julgue os itens abaixo e assinale o correto:

- a) o produto de dois números irracionais é sempre um número irracional.
- b) a soma de dois números irracionais é sempre um número irracional.
- c) entre os números reais 3 e 4 existe apenas um único número irracional.
- d) 3,14 é um número racional.
- e) a diferença entre dois números inteiros negativos é l sempre um número inteiro negativo.

Conjunto dos números reais (ℝ)

□ A reunião dos racionais com os irracionais resulta no conjunto dos números reais. Ele é a partir de agora, o nosso universo numérico.



 $\mathbb{R} = \{x/x \text{ \'e racional ou irracional}\}$

- (UEPG PR) Assinale o que for correto.
- O número real representado por 0,5222... é um número racional.
- O quadrado de qualquer número irracional é um número racional.
- Se m e n são números irracionais então m.n pode ser racional.
- 08. O número real $\sqrt{3}$ pode ser considerado um número racional.

Apostila pág. 330 – Questão 1

Divisores naturais de um número

Sendo **a**, **b** e **c** números naturais e **a** . **b** = **c**, diz-se que **a** e **b** são divisores **c**.

Exemplos:

$$D(12) = \{1, 2, 3, 4, 6, 12\}$$

$$D(72) = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72\}$$

$$D(7) = \{1, 7\}$$

Observações:

- O menor divisor de um número é 1.
- O maior divisor de um número é ele próprio.

Critérios de divisibilidade

Divisibilidade por 2

Um número é divisível por 2 se for par, ou seja terminar em 0, 2, 4, 6, 8.

Exemplos: 28, 402, 5128.

Divisibilidade por 3

Um número é divisível por 3 se a soma dos valores absolutos dos seus algarismos for divisível por 3. Exemplos: 18, 243, 3126.

Divisibilidade por 4

Um número é divisível por 4 se os dois últimos algarismos forem divisíveis por 4 ou quando o número terminar em 00.

Exemplos: 5716, 8700, 198200.

Divisibilidade por 5

Um número é divisível por 5 se o último algarismo for 0 ou 5. Exemplos: 235, 4670, 87210.

Divisibilidade por 6

Um número é divisível por 6 se for simultaneamente divisível por 2 e 3.

Exemplos: 24, 288, 8460.

Divisibilidade por 7

Processo prático: Veja o número 4137

1º Passo: separa-se o último algarismo e dobra-se o seu

valor. $4137 \to 7 \to 2 \times 7 = 14$

2º Passo: subtrai-se o número assim obtido do número que restou após a separação do último algarismo.

$$413 - 14 = 399$$

3º Passo: procede assim até se obter um número múltiplo de 7.

$$399 \rightarrow 9 \rightarrow 2 \times 9 = 18$$

$$39 - 18 = 21$$

$$21 \rightarrow 1 \rightarrow 2 \times 1 = 2$$

$$2 - 2 = 0$$

Logo 4137 é múltiplo de 7

Critérios de divisibilidade

Divisibilidade por 8

Um número é divisível por 8 se os três últimos algarismos forem divisíveis por 8 ou forem três zeros Exemplos: 15320, 67000.

Divisibilidade por 9

Um número é divisível por 9 quando a soma dos seus algarismos for um número divisível por 9. Exemplos: 8316, 35289.

Divisibilidade por 10

Um número é divisível por 10 se o último algarismo for zero.

Exemplos: 5480, 1200, 345160.

Exemplo:

Considere-se o número de 6 algarismos dos quais o algarismos das unidades é n e todos os demais são iguais a 4, ou seja: 44444n . O valor de n a fim de que este número seja divisível por 6 é:

- a) 2
- b) 3
- c) 4
- d) 6
- e) 8

C

Apostila pág. 327 – Questão 4

Números Primos

Um número natural p, p \neq 0 e $p \neq$ 1, é denominado número primo se apresentar apenas dois divisores, 1 e p. Exemplos: 2, 3, 5, 7, 11, 13,....

Observação: Um número é denominado composto se não for primo.

Números Primos - Reconhecimento

Para identificá-los procede-se assim:

- 1º risca-se o número 1, pois ele não é primo;
- **2º** risca-se todos os números pares com exceção do 2, pois todos tem mais de 2 divisores;
- **3º** risca-se todos os números divisíveis por 3, com exceção do 3, pois todos têm mais de 2 divisores;
- **4º** como o 4 já estava riscado pois é divisível por 2, risca-se todos os números divisíveis por 5, com exceção do 5, pois todos têm mais de 2 divisores; E assim por diante.

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Números Primos

Um número natural p, p \neq 0 e $p \neq$ 1, é denominado número primo se apresentar apenas dois divisores, 1 e p.

Exemplos: 2, 3, 5, 7, 11, 13,.....

Observação: Um número é denominado composto se não for primo.

Números Primos - Reconhecimento

Com o conhecimento de alguns números primos (2, 3, 5, 7, 11, 13, 17, ...) procede-se assim:

- Divide-se o número dado pela sucessão dos números primos conhecidos.
- Caso se obtenha o quociente menor ou igual ao divisor antes de se obter nessas divisões o resto nulo, diz-se que o número é primo.

Divisores naturais de um número

Sendo **a**, **b** e **c** números naturais e **a** . **b** = **c**, diz-se que **a** e **b** são divisores **c**.

Exemplos:

$$D(12) = \{1, 2, 3, 4, 6, 12\}$$

$$D(72) = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72\}$$

$$D(7) = \{1, 7\}$$

Observações:

- O menor divisor de um número é 1.
- O maior divisor de um número é ele próprio.

Quantidade de divisores naturais de um número

Quantos divisores naturais possui o número 72?

$$72 = 2^3 . 3^2$$

$$\frac{1}{1} \frac{\text{Número de}}{\text{Núvisores naturais}} = (+1) - (+1) = 12$$

Quantidade de divisores naturais de um número

NÚMERO	QUANTIDADE DE DIVISORES NATURAIS	QUANTIDADE DE DIVISORES INTEIROS
72	12	24
1800	36	72

Divisão Euclidiana

$$a b \\ r q$$

$$a = q.b + r$$

Exemplo:

Dia 20 de julho de 2008 caiu num domingo. Três mil dias após essa data, cairá:

- a) numa quinta feira
- b) numa sexta feira
- c) num sábado
- d) num domingo
- e) numa segunda feira

Sistema Decimal

Exemplo:

A representação decimal de certo número inteiro positivo tem dois algarismos. Se o triplo da soma desses algarismos é igual ao próprio número, então o produto dos algarismos é igual a:

a) 10 b) 12 c) 14 d) 16

Apostila pág. 326 – Questão 1

AULA

ARITMÉTICA BÁSICA

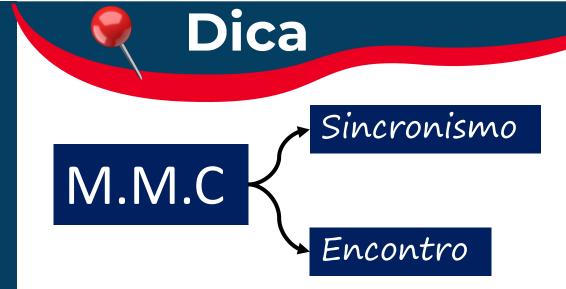
Professor Ricardinho

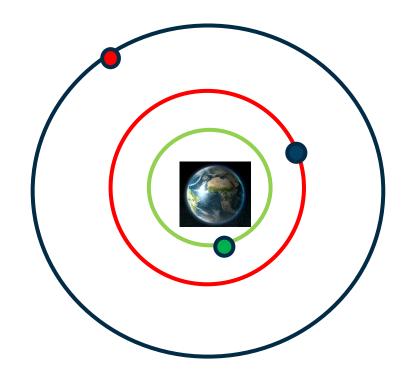
Matemática – Frente C



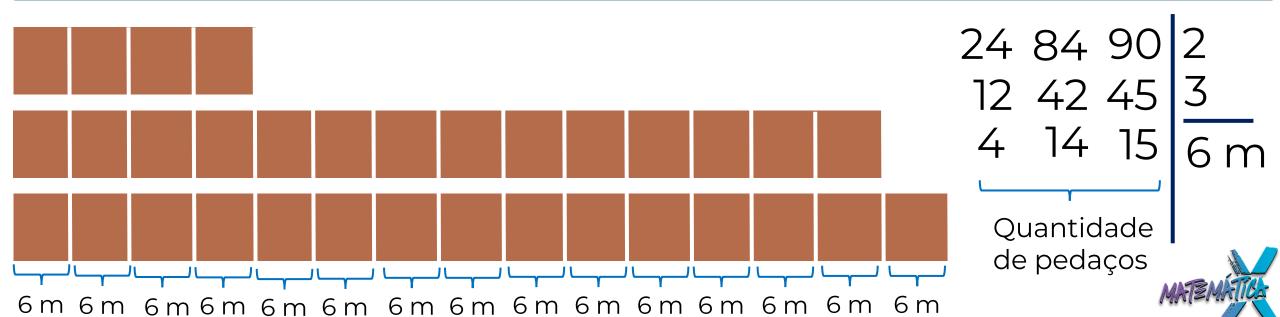
M.M.C – aplicação contextual

Um país lançou em 02/05/2000 os satélites artificiais A, B e C com as tarefas de fiscalizar o desmatamento em áreas de preservação, as nascentes dos rios e a pesca predatória no Oceano Atlântico. No 03/05/2000 podia-se observá-los dia alinhados, cada um em uma órbita circular diferente, tendo a Terra como centro. Se levam. satélites OS respectivamente, 6, 10 e 9 dias para darem uma volta completa em torno da Terra, então o número de dias para o próximo alinhamento é:





Três tábuas medindo respectivamente 24m, 84m e 90m serão cortadas em pedaços iguais e do maior tamanho possível. Então o comprimento de cada tábua é:



Exemplos: 2, 3, 5, 7, 11, 13,.....

Observação: Um número é denominado composto se não for primo.

Números	M.M.C	M.D.C
6 e 12	12	6
8 e 24	24	8
x e 2x	2x	x
3 e 5	15	1
15 e 16 Primos entre si	240	1

1) O M.M.C. entre dois números em que o maior é múltiplo do menor é o maior deles.

Exemplo: M.M.C(8,16) = 16

2) O M.D.C. entre dois números em que o maior é múltiplo do menor é o menor deles.

Exemplo: M.D.C(12,24) = 12

VERDADEIRO OU FALSO

Se m.m.c. (p,q) = p.q então p e q são números primos.

RESPOSTA: FALSO

Quantidade de Divisores

Ö

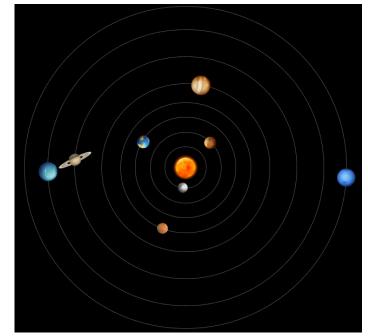
Quantos divisores naturais possui o número 72?

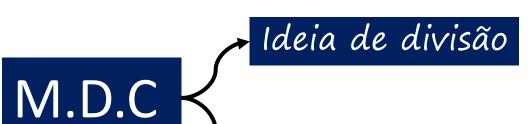
72 possui 24 divisores inteiros

Resumo

Sincronismo

Encontro

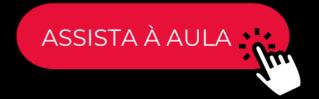




Partes iguais

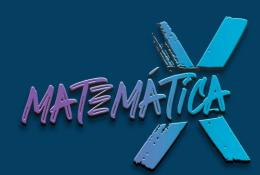
M.M.C

PROGRESSÃO ARITMÉTICA



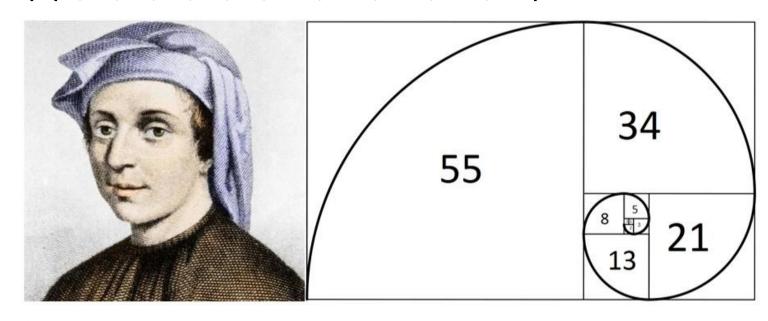
Professor Ricardinho

Matemática – Frente C



Sequências

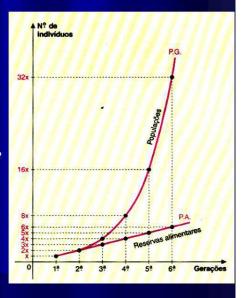
- a) (2, 5, 8, 11,...) Progressão Aritmética
- b) (2, 4, 8, 16,...) Progressão Geométrica
- c) (1, 3, 6, 10, 15...) Progressão Aritmética de 2º ordem
- d) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...) Sequência de Fibonacci



COMPARAÇÃO DOS GRÁFICOS DE P.A. E P.G.

"A produção de alimentos cresce em progressão aritmética enquanto a população cresce em progressão geométrica".

Conclusão: Fome Mundial



CONDIÇÃO DE EXISTÊNCIA:

$$a_2 - a_1 = a_3 - a_2 = r$$

$$(2, 5, 8,)$$
 $r = 5 - 2 = 3$

$$(10, 6, 2...)$$
 $r = 6 - 10 = -4$

$$(3, 3, 3....)$$
 $r = 3 - 3 = 0$

$$r > 0 \rightarrow P.A.$$
 crescente
 $r = 0 \rightarrow P.A.$ constante
 $r < 0 \rightarrow P.A.$ decrescente

01) A sequência (19 – 6x, 2 + 4x, 1 + 6x) são termos consecutivos de uma P.A. Então o valor de x é:

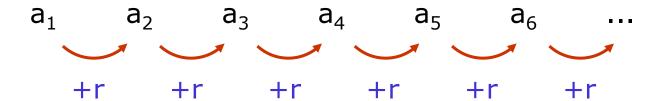
Propriedade da média aritmética

P.A.(a, b, c)
$$b = \frac{a + c}{2}$$

02) Os números que exprimem o lado, a diagonal e a área de um quadrado estão em P.A, nessa ordem. O lado do quadrado mede:

Termo geral da P.A.

• Observe a sequência de termos abaixo.



$$a_2 = a_1 + r$$
 $a_3 = a_1 + 2r$
 $a_4 = a_1 + 3r$

$$a_{10} = a_1 + 9r$$

$$a_n = a_1 + (n - 1)r$$

P.A.

$$a_2 - a_1 = a_3 - a_2 = r$$

TERMO GERAL

$$a_2 = a_1 + r$$

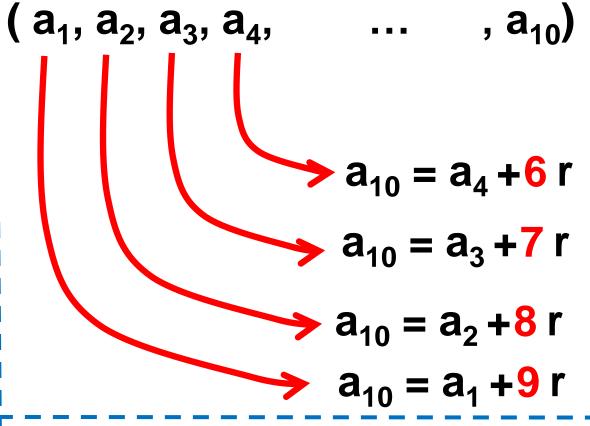
$$a_3 = a_1 + 2r$$

$$a_4 = a_1 + 3r$$

$$a_7 = a_1 + 6r$$

$$a_{10} = a_1 + 9r$$

$$a_n = a_1 + (n - 1).r$$



Exemplo: Determine o décimo segundo termo da P.A (2, 5, 8,...)

$$a_n = a_1 + (n - 1).r$$

$$a_{12} = a_1 + 11r$$

$$a_{12} = 2 + 11.3$$

DE OLHO NO VESTIBULAR

$$a_2 - a_1 = a_3 - a_2 = r$$

TERMO GERAL

$$a_2 = a_1 + r$$

$$a_3 = a_1 + 2r$$

$$a_{\Delta} = a_1 + 3r$$

$$a_7 = a_1 + 6r$$

$$a_{10} = a_1 + 9r$$

$$a_n = a_1 + (n - 1).r$$

VERDADEIRO OU FALSO

Existem 64 múltiplos de 7 entre 50 e 500.

O vigésimo termo da progressão aritmética $(x, x + 10, x^2, ...)$ com x < 0 é *186*.

 $a_{1,} a_{2,} a_{3,} \dots a_{n,}$

CONDIÇÃO DE EXISTÊNCIA:

$$a_2 - a_1 = a_3 - a_2 = r$$

REPRESENTAÇÕES ESPECIAIS

3 Termos em P.A. $X - \Gamma$, X, $X + \Gamma$

5 Termos em P.A. x-2r, x-r, x, x+r, x+2r

Numa progressão aritmética crescente de 3 termos a soma deles é 15 e o produto é 105. Dessa forma, o maior termo dessa sequência é:

TERMO GERAL

$$a_2 = a_1 + r$$

$$a_3 = a_1 + 2r$$

$$a_{1} = a_{1} + 3r$$

$$a_7 = a_1 + 6r$$

$$a_{10} = a_1 + 9r$$

$$a_n = a_1 + (n - 1).r$$

$$(x-r, x, x+r)$$

$$x - y + x + x + y = 15$$

$$3x = 15$$

$$x = 5$$

$$(x-r).x(x+r) = 105$$

 $(5-r).5(5+r) = 105$
 $(5-r).(5+r) = 21$
 $25-r^2 = 21$
 $r = 2$ ou $r = -2$

MAIOR TERMO: x + r = 5 + 2 = 7

 $a_{1,} a_{2,} a_{3,} \dots a_{n,}$ **CONDIÇÃO DE EXISTÊNCIA:**

$$a_2 - a_1 = a_3 - a_2 = r$$

$$a_2 = a_1 + r$$

JERMO GERAL

$$a_4 = a_1 + 3r$$

$$a_7 = a_1 + 6r$$

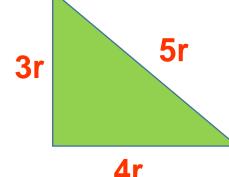
$$a_{10} = a_1 + 9r$$

REPRESENTAÇÕES ESPECIAIS

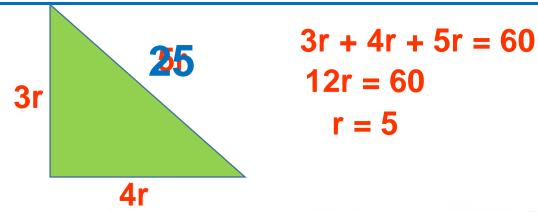
3 Termos em P.A. X - r, X, X + r

5 Termos em P.A. x-2r, x-r, x, x+r, x+2r

TRIÂNGULO RETÂNGULO - LADOS EM P.A.



Exemplo: O perímetro de um triângulo retângulo mede 60m e as medidas de seus lados estão em P.A. Determine o valor da hipotenusa.



P.A.

$$a_2 - a_1 = a_3 - a_2 = r$$

TERMO GERAL

$$a_2 = a_1 + r$$

$$a_3 = a_1 + 2r$$

$$a_4 = a_1 + 3r$$

$$a_7 = a_1 + 6r$$

$$a_{10} = a_1 + 9r$$

$$a_n = a_1 + (n - 1).r$$

REPRESENTAÇÕES ESPECIAIS

3 Termos em P.A. X - r, X, X + r

5 Termos em P.A. x-2r, x-r, x, x+r, x+2r

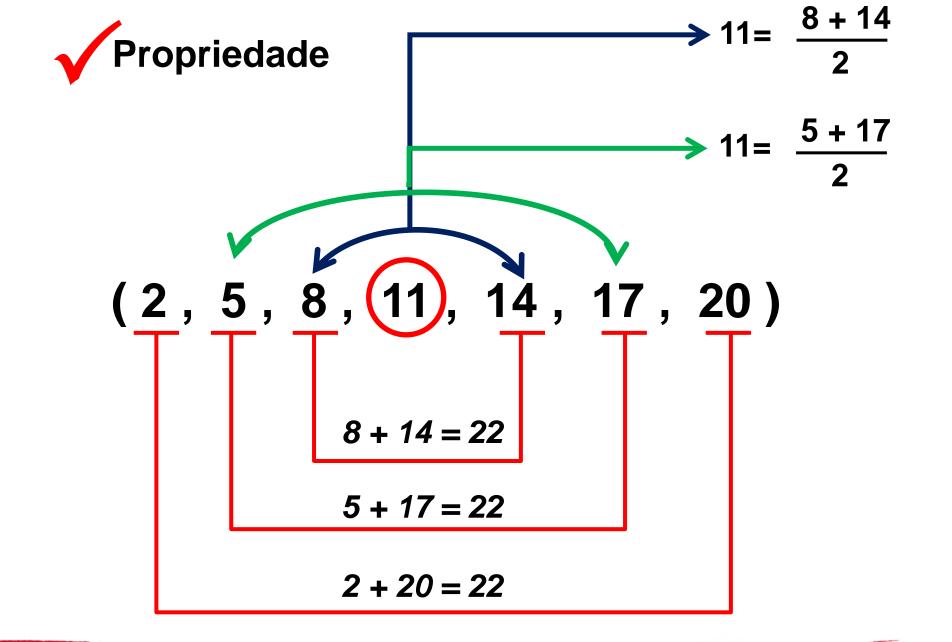
TRIÂNGULO RETÂNGULO - LADOS EM P.A.



4r

O perímetro de um triângulo retângulo mede 6m e as medidas de seus lados estão em P.A. A área desse triângulo é:

Resposta: 1,5



 $a_{1,} a_{2,} a_{3,} \dots a_{n,}$ **CONDIÇÃO DE EXISTÊNCIA:**

$$a_2 - a_1 = a_3 - a_2 = r$$

TERMO GERAL

$$a_2 = a_1 + r$$

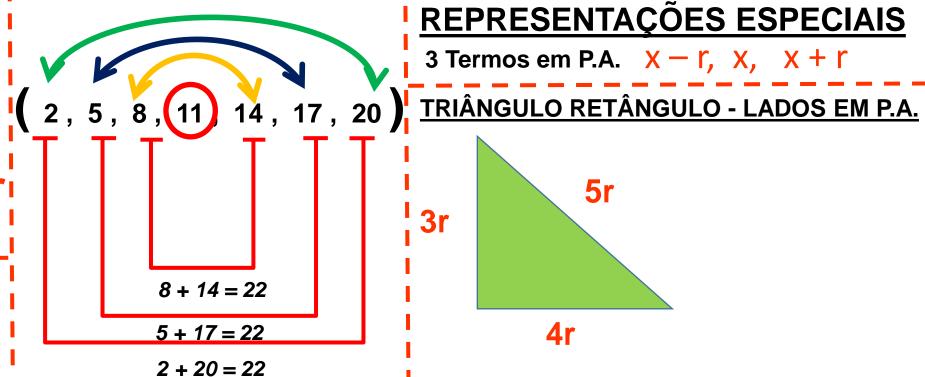
$$a_3 = a_1 + 2r$$

$$a_{4} = a_{1} + 3r$$

$$a_7 = a_1 + 6r$$

$$a_{10} = a_1 + 9r$$

$$a_n = a_1 + (n - 1).r$$



$$11 = \frac{8+14}{2}$$

REPRESENTAÇÕES ESPECIAIS

3 Termos em P.A. X - r, X, X + r

