

Professor Ricardinho

Matemática – Frente B

cursomtm@gmail.com

Cevianas Notáveis

Matemática – Frente B

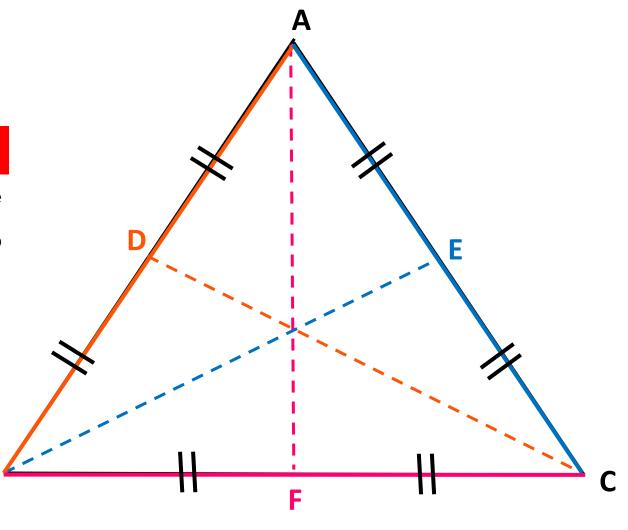
MEDIANA

Segmento de reta que liga um vértice deste triângulo ao **ponto médio** do lado oposto a este vértice.

$$\overline{BD} = \overline{AD}$$

$$\overline{AE} = \overline{CE}$$

$$\overline{BF} = \overline{CF}$$



Baricentro

Ponto de encontro das

medianas.

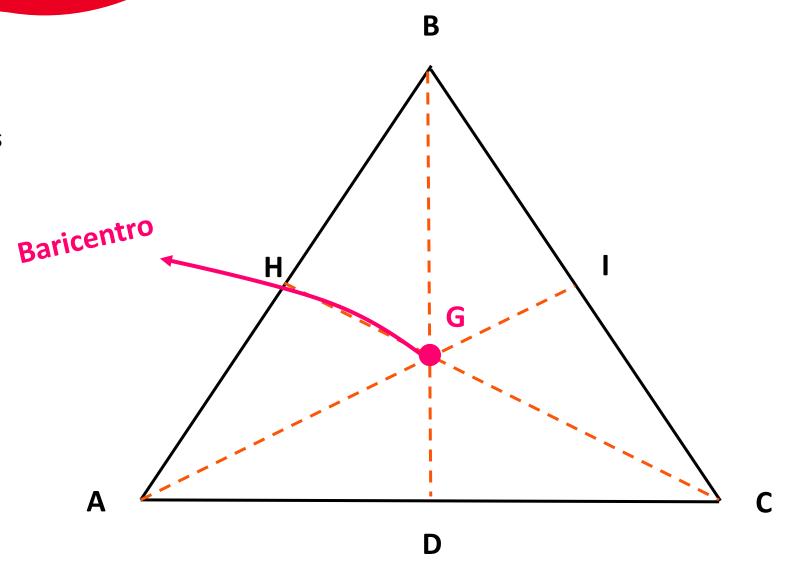
Se \overline{BD} for

mediana:

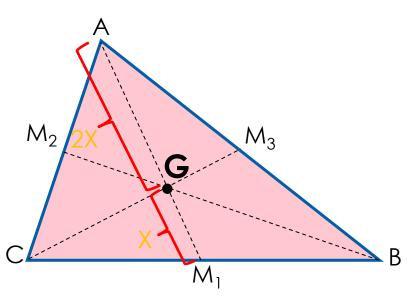
$$\overline{BG} = 2\overline{DG}$$

$$\overline{BG} = \frac{2}{3}\overline{BD}$$

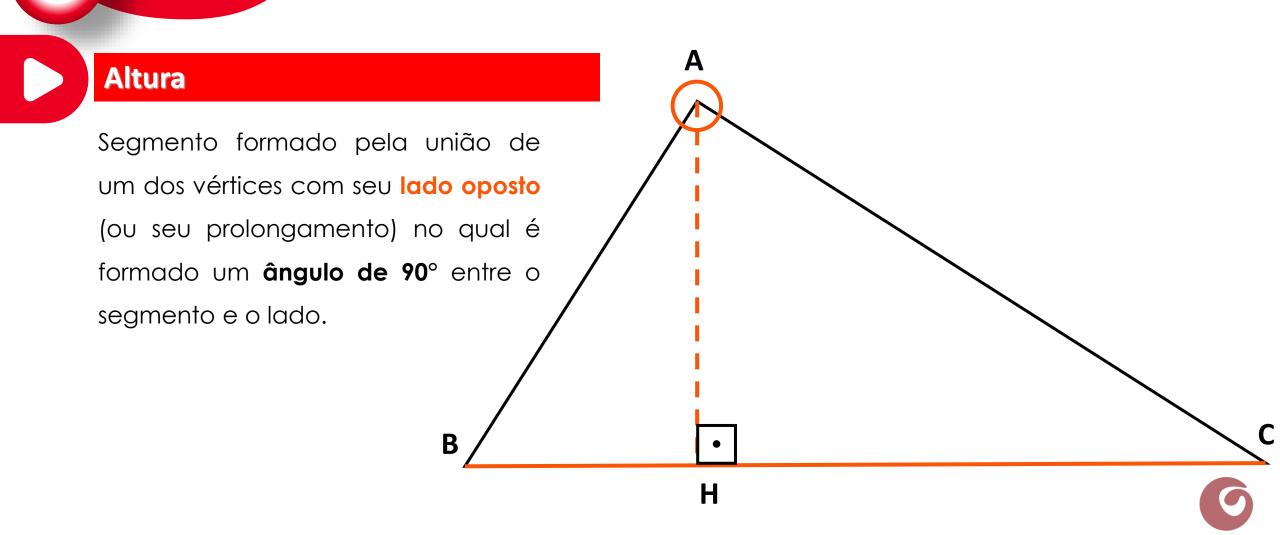
$$\overline{DG} = \frac{1}{3}\overline{BD}$$

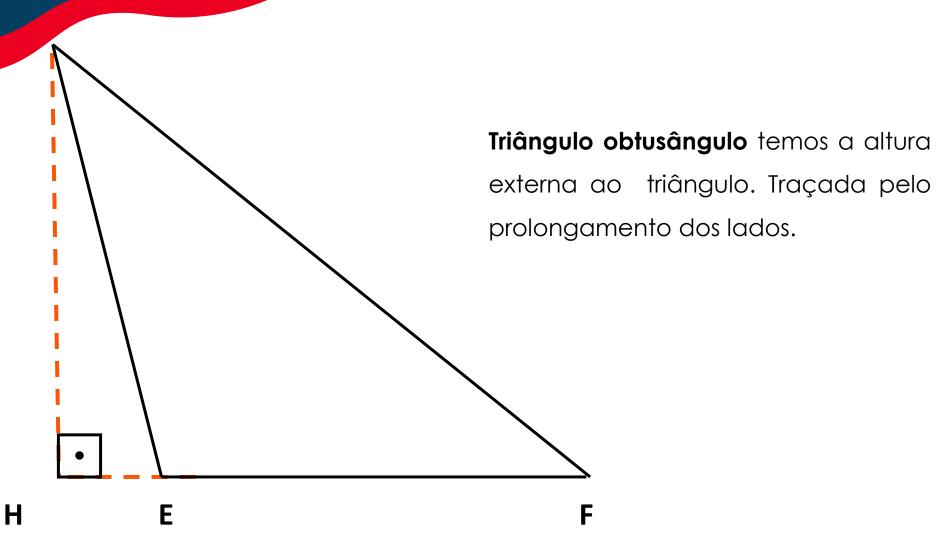


Mediana - Baricentro



- O ponto de encontro das três medianas é o baricentro (G)
- O baricentro divide a mediana na razão de 2 para 1:

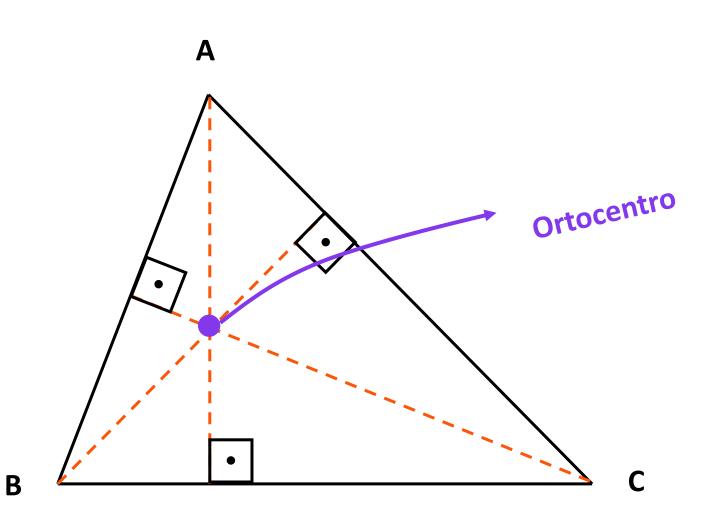




Ortocentro

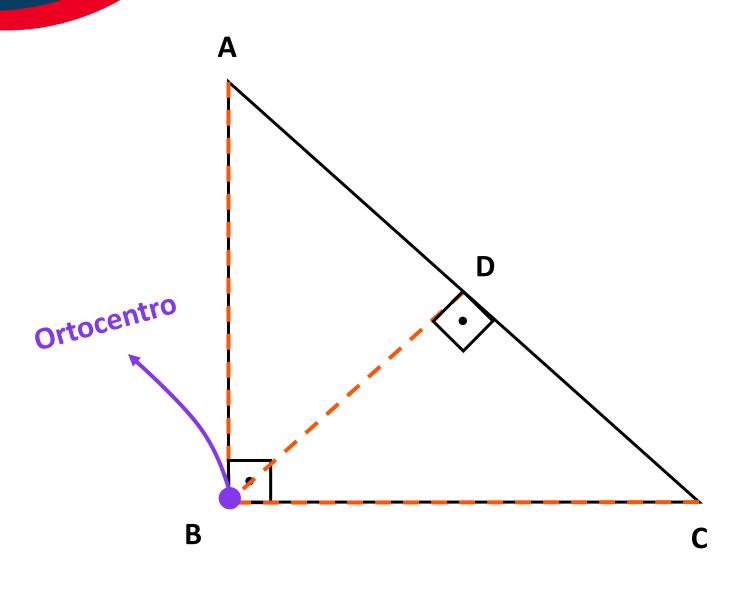
Ponto de **encontro** entre todas as **alturas** de um triângulo.

No **triângulo acutângulo**, as alturas e o ortocentro ficam no interior do triângulo.

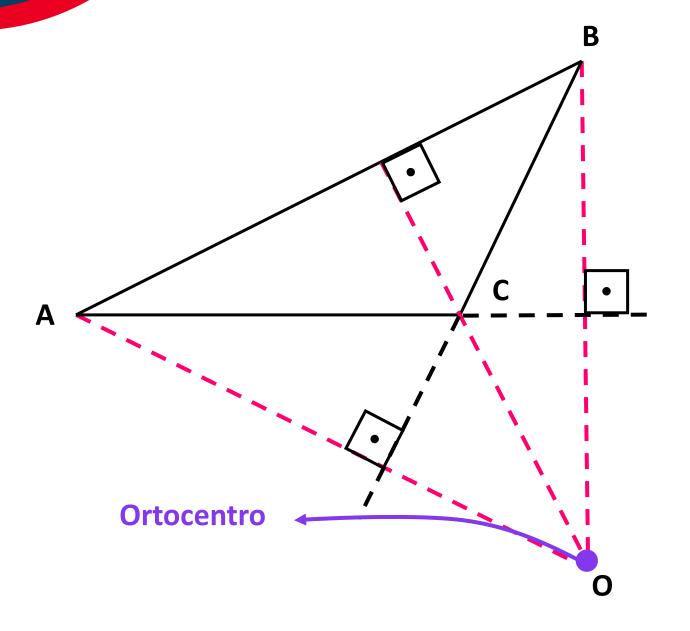


No **triângulo retângulo**, duas alturas são coincidentes com os dois catetos.

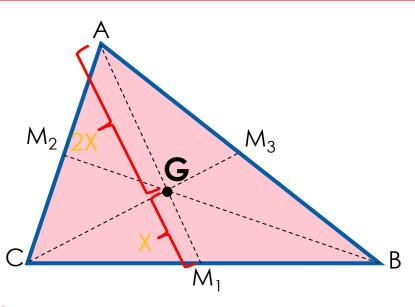
A outra altura fica no interior do triângulo, e o ortocentro é localizado no vértice que possui o ângulo de 90°.



No triângulo obtusângulo, uma das alturas fica no interior do triângulo, e as outras duas ficam no seu exterior junto com o ortocentro.

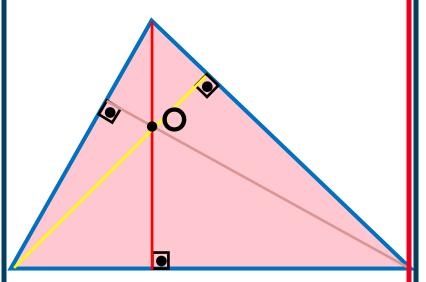


Mediana - Baricentro



- O ponto de encontro das três medianas é o baricentro (G)
- O baricentro divide a mediana na razão de 2 para 1:

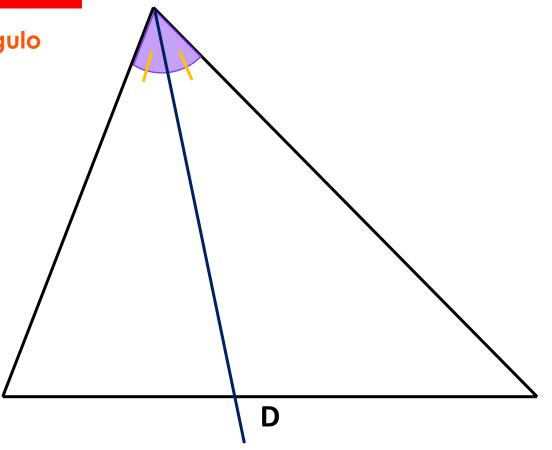
Altura - Ortocentro



➤ O encontro das três alturas de um triângulo é chamado de ortocentro (O)

Segmento de reta que divide o **ângulo ao meio**.

В



A

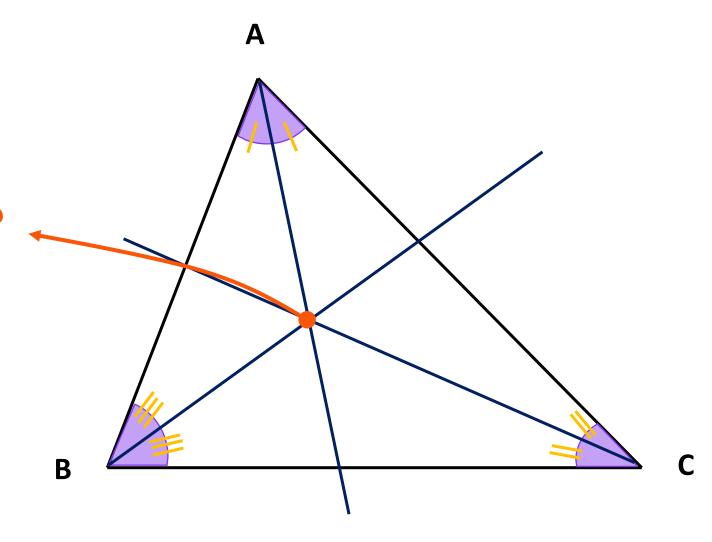
Incentro

Ponto de **encontro** das

bissetrizes internas de um

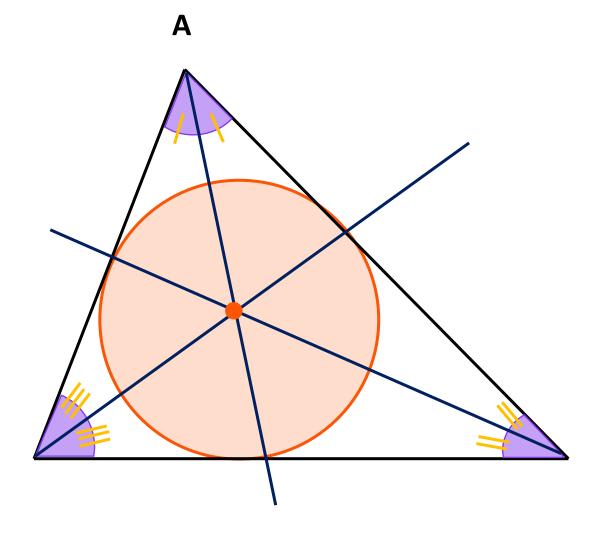
triângulo.

Incentro



O centro de uma circunferência inscrita em um triângulo coincide com o incentro dessa figura.

O incentro de um triângulo é equidistante de todos os seus lados, isto é, as distâncias entre o incentro e os três lados do triângulo são todas iguais.



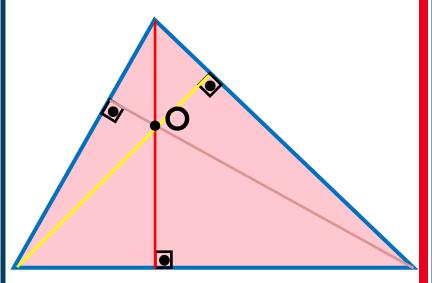
B

Mediana - Baricentro

M_2 M_3 M_3

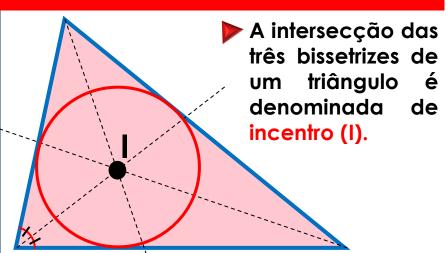
- O ponto de encontro das três medianas é o baricentro (G)
- O baricentro divide a mediana na razão de 2 para 1:

Altura - Ortocentro



▶ O encontro das três alturas de um triângulo é chamado de ortocentro (O)

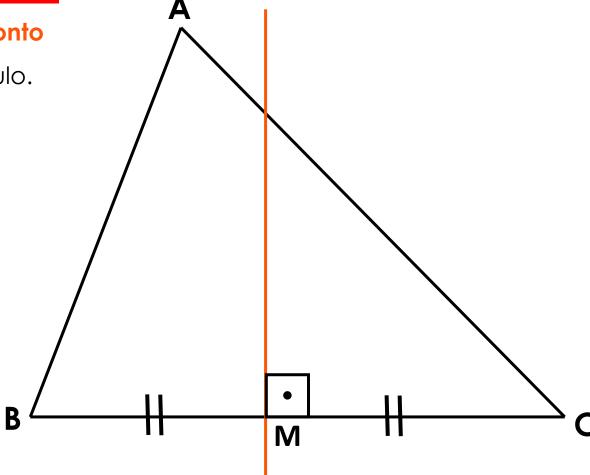
Bissetriz interna - Incentro



MEDIATRIZ

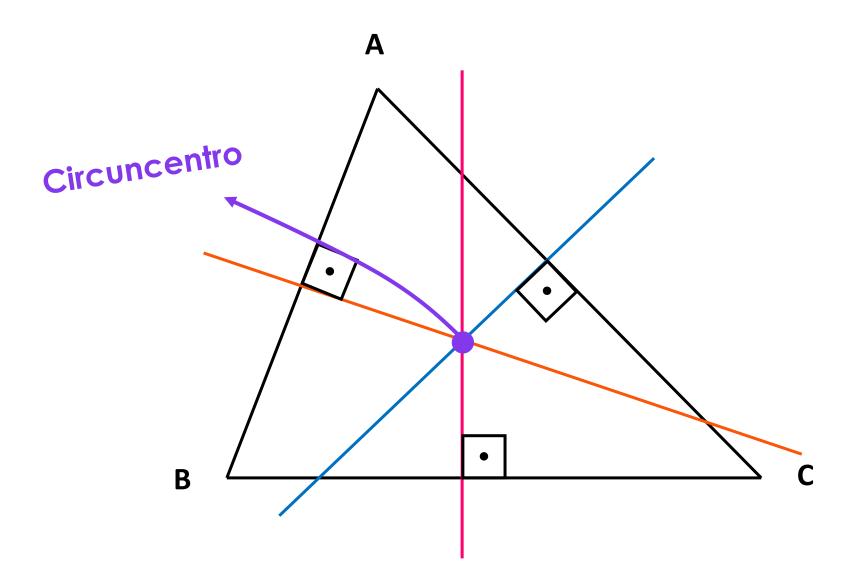
Reta perpendicular que passa no ponto médio em um dos lados desse triângulo.

 $\overline{BM} = \overline{CM}$



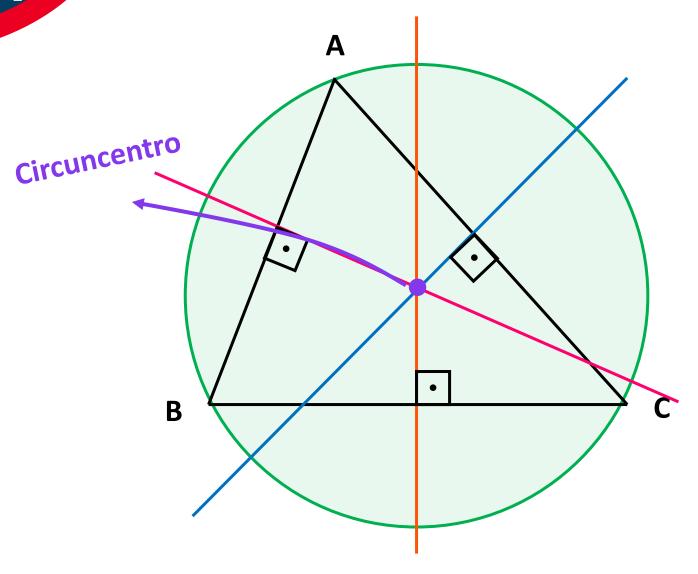
Circuncentro

Ponto de **encontro** das **mediatrizes**.

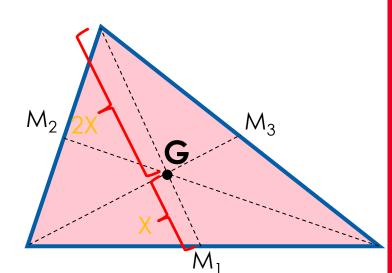


Em um triângulo inscrito em uma circunferência, o circuncentro é o centro dessa circunferência.

Em um **triângulo acutângulo**, o circuncentro fica no interior.

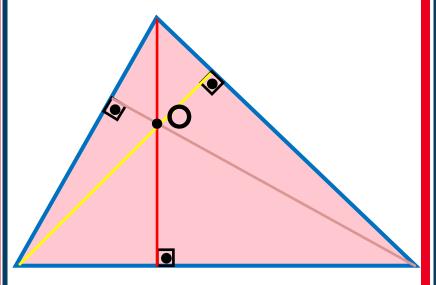


Mediana - Baricentro



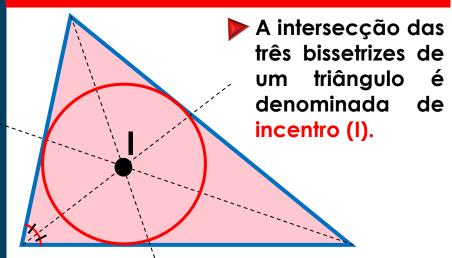
- O ponto de encontro das três medianas é o baricentro (G)
- O baricentro divide a mediana na razão de 2 para 1:

Altura - Ortocentro

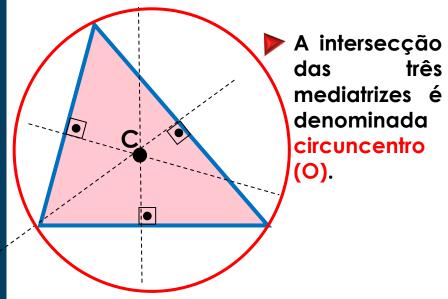


▶ O encontro das três alturas de um triângulo é chamado de ortocentro (O)

Bissetriz interna - Incentro



Mediatriz - Circuncentro



PONTOS NOTÁVEIS DE UM TRIÂNGULO

PONTOS NOTÁVEIS	ENCONTRO DAS:
B aricentro	Medianas
I ncentro	Bissetrizes
C ircuncentro	Mediatrizes
Ortocentro	Alturas

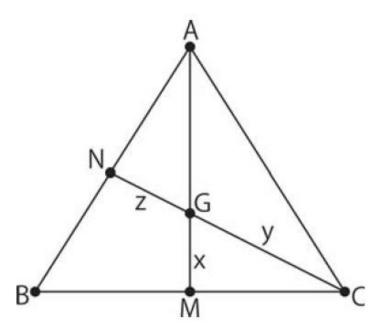
1. Considere os pontos notáveis de um triângulo, sendo:

- G Baricentro
- C Circuncentro
- I Incentro
- O Ortocentro

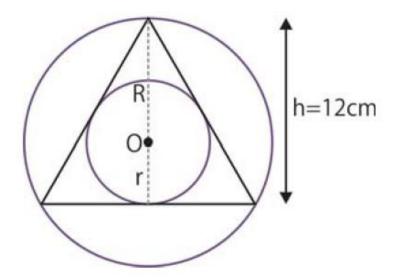
Preencha os parênteses com G, C, I ou O.

- a) () Ponto de encontro das bissetrizes.
- b) () Ponto de encontro das mediatrizes dos lados de um triângulo.
- c) () Ponto de encontro das alturas de um triângulo.
- d) () Centro da circunferência inscrita num triângulo.
- e) () Centro da circunferência circunscrita a um triângulo.
- f) () Ponto do plano de um triângulo e equidistante dos vértices desse triângulo.
- g) () Ponto do plano de um triângulo e equidistante dos lados desse triângulo.

 No triângulo ABC, da figura, AM e CN são medianas que se interceptam em G. Sendo AG = 10 cm e CN = 18 cm, calcule x, y e z.

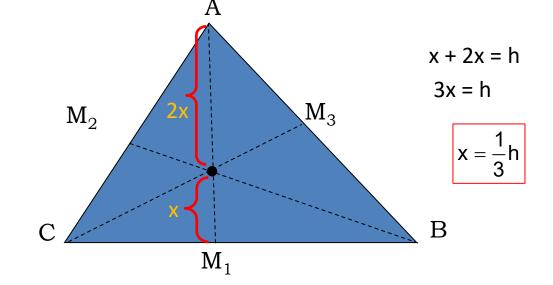


 Determine o raio da circunferência inscrita e o raio da circunferência circunscrita no triângulo equilátero da figura abaixo.



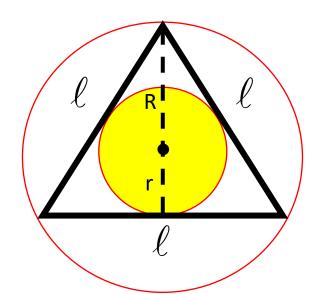
PONTOS NOTÁVEIS DE UM TRIÂNGULO

PONTOS NOTÁVEIS	ENCONTRO DAS:
B aricentro	Medianas
I ncentro	Bissetrizes
C ircuncentro	Mediatrizes
Ortocentro	Alturas



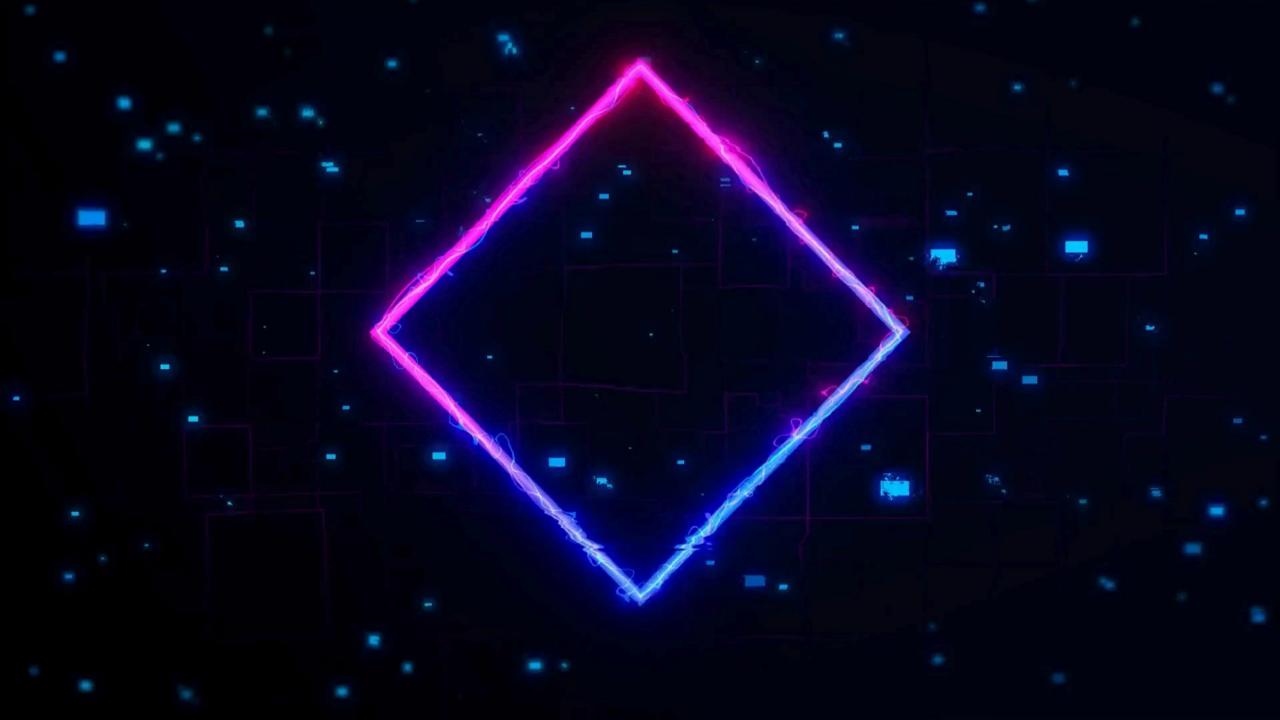
Detalhes...

- 1) Os pontos notáveis num triângulo isósceles são sempre colineares.
- 2) Os pontos notáveis num triângulo equilátero são sempre coincidentes.

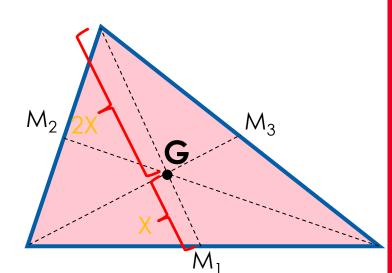


$$r = \frac{1}{3}h$$

$$R = \frac{2}{3}h$$

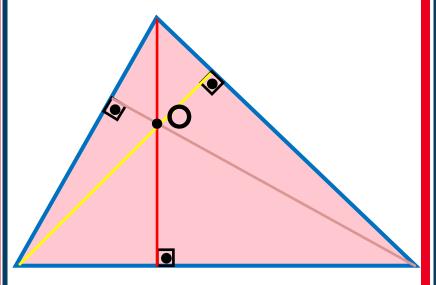


Mediana - Baricentro



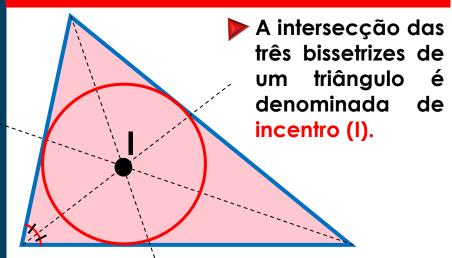
- O ponto de encontro das três medianas é o baricentro (G)
- O baricentro divide a mediana na razão de 2 para 1:

Altura - Ortocentro

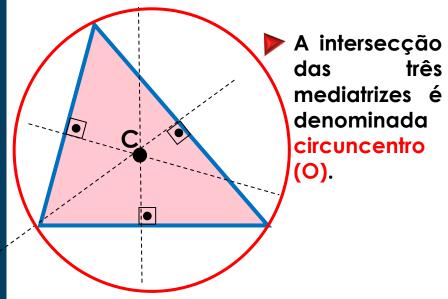


▶ O encontro das três alturas de um triângulo é chamado de ortocentro (O)

Bissetriz interna - Incentro



Mediatriz - Circuncentro



Quadriláteros Notáveis

Matemática – Frente B

Quadriláteros Notáveis

Paralelogramos |

- **Simples**
- Retângulo
- Losango
- **Quadrado**

Trapézios

- Isósceles
- Escaleno
- Retângulo

Quadriláteros Notáveis

Paralelogramos

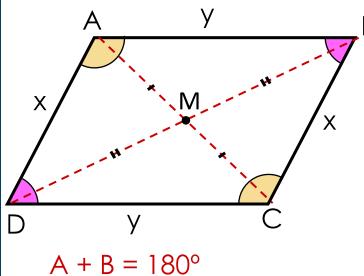
- **▶** Simples
- Retângulo
- **Losango**
- Quadrado

Trapézios

- **Isósceles**
- Escaleno
- Retângulo

Simples

- Lados opostos paralelos e congruentes
- Diagonais não congruentes
- Diagonais não bissetrizes

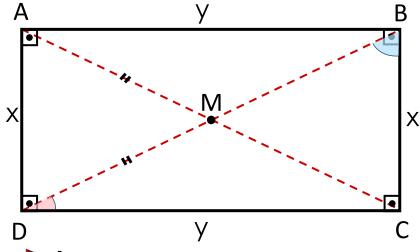


$$A + B = 180^{\circ}$$

 $B + C = 180^{\circ}$

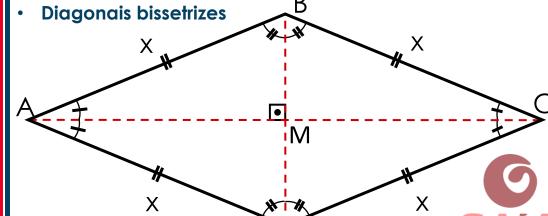
Retângulo

- Lados opostos paralelos e congruentes
- Diagonais congruentes
- Diagonais não bissetrizes



Losango

- Lados congruentes
- Diagonais não congruentes

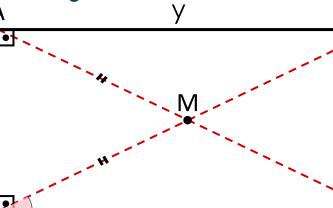


Paralelogramos

- Lados opostos paralelos e congruentes
- Diagonais congruentes

Retângulo

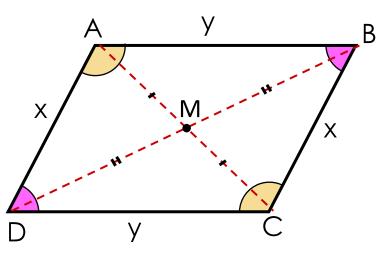
Diagonais não bissetrizes



Simples

- Lados opostos paralelos e congruentes

 X
- Diagonais não congruentes
- Diagonais não bissetrizes

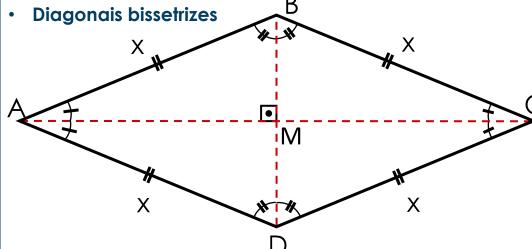


$$A + B = 180^{\circ}$$

$$B + C = 180^{\circ}$$

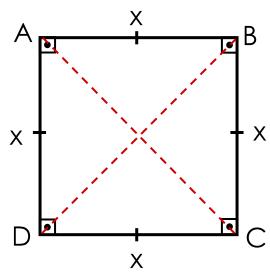
Losango

- **Lados congruentes**
- Diagonais não congruentes D
- Diagonais bissetrizes



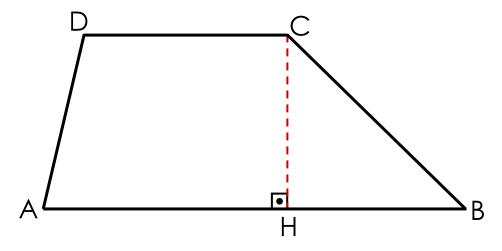
Quadrado

- **Lados congruentes**
- Diagonais congruentes
- Diagonais bissetrizes



Trapézios

 Chama-se trapézio todo quadrilátero que tem dois lados paralelos e os outros dois não-paralelos.

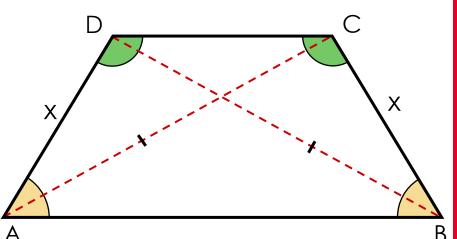


- ✓ Os lados paralelos AB e CD são as bases do trapézio;
- ✓ AD e BC são os lados não-paralelos.
- ✓ A distância entre as bases, CH, é a altura do trapézio.

Trapézios

Isósceles

- Lados não paralelos congruentes
- Diagonais congruentes



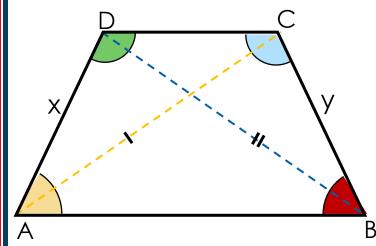
$$A = B e C = D$$

$$A + D = 180^{\circ}$$

$$B + C = 180^{\circ}$$

Isósceles

- Lados não paralelos não congruentes
- Diagonais não congruentes



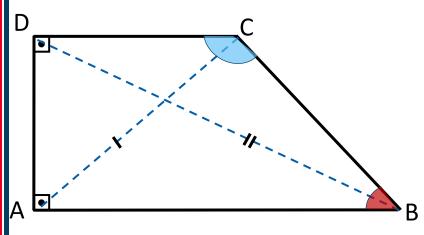
$$A \neq B \in C \neq D$$

$$A + D = 180^{\circ}$$

$$B + C = 180^{\circ}$$

Retângulo

- Um dos lados perpendicular às bases
- Diagonais não congruentes



$$B + C = 180^{\circ}$$

