

MATRIZES – PARTE I MATRIZES – CONCEITOS INICIAIS

1. Introdução

A tabela seguinte mostra a classificação de 8 dos 20 times no campeonato brasileiro de 2017.

Club	В	Pts	VIT	Е	D	GP	GC	SG
1	limit Corinthians	72	21	9	8	50	30	20
2	Palmeiras	63	19	6	13	61	45	16
3	in Santos	63	17	12	9	42	32	10
4	ĕ Grêmio	62	18	8	12	55	36	19
5	Cruzeiro	57	15	12	11	47	39	8
6	Flamengo	56	15	11	12	49	38	11
7	Vasco da Gama	56	15	11	12	40	47	-7
8	Chapecoense	54	15	9	14	47	49	-2

Consultando a tabela, podemos dizer que:

- O Cruzeiro marcou 47 gols. Esse número encontra-se na 5ª linha e na 5ª coluna.
- A Chapecoense obteve 15 vitórias. Esse número encontra-se na 8ª linha e 2ª coluna.
- O campeão Corinthians obteve 72 pontos que corresponde ao elemento situado na 1ª linha e na 1ª coluna.

Veja que estamos chamando de linhas as filas horizontais e de colunas as filas verticais.

Tabelas como estas que você acabou de ler serão chamadas de matrizes. O estudo das matrizes é de fundamental importância pelas inúmeras aplicações que apresenta nos mais diversos ramos da ciência e tecnologia: Matemática, Física, Engenharia, Computação, etc.

2. Definição

Para definirmos o conceito de matriz vamos retornar a tabela da introdução do módulo, colocando seus números entre parênteses.

A tabela acima é um exemplo de matriz 8x7 (lê-se matriz oito por sete), na qual 8 e 7 representam a quantidade de linhas e colunas respectivamente.

Define-se de forma genérica então:

Uma matriz do tipo $\mathbf{m} \times \mathbf{n}$ (lê-se: m por n), \mathbf{m} , $\mathbf{n} \ge 1$, é uma tabela formada por \mathbf{m} . \mathbf{n} elementos dispostos em \mathbf{m} linhas e \mathbf{n} colunas. As matrizes são representadas através de parênteses (), colchetes [] ou através de barras duplas $\| \ \|$.

Exemplos.:

$$A = \begin{pmatrix} 2 & 0 & 3 \\ 7 & 0 & 3 \end{pmatrix}$$
 (lê-se: A dois por três)

$$A = \begin{bmatrix} 1 & 4 & 8 & -0 \\ 6 & -1 & 0 & 4 \end{bmatrix}$$
 (lê-se: A dois por quatro)

$$\mathbf{A} = \begin{bmatrix} 2 & -1 \\ 1 & 6 \\ 0 & 6 \end{bmatrix}$$
 (lê-se: A três por dois)

Observação:

 A matriz formada por apenas uma linha será denominada MATRIZ LINHA.

$$A = (3 \ 1 \ 2)$$
 é uma matriz linha 1x3

• A matriz formada por apenas uma coluna será denominada MATRIZ COLUNA.

$$A = \begin{pmatrix} 1 \\ -2 \\ 5 \\ 0 \end{pmatrix} \text{ \'e uma matriz } 4x1$$

3. Notações

3.1. Notação Explícita

Uma matriz genericamente é representada por letras maiúsculas e seus elementos por letras minúsculas. Cada elemento é indicado por a_{ij} . O índice i indica a linha e j a coluna às quais o elemento pertence. Sendo assim, uma matriz $A_{m \times n}$ algebricamente pode ser representada assim:

$$\mathsf{A}_{\mathsf{mxn}} = \begin{bmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} & \mathsf{a}_{13} & \cdots & \mathsf{a}_{1n} \\ \mathsf{a}_{21} & \mathsf{a}_{22} & \mathsf{a}_{23} & \dots & \mathsf{a}_{2n} \\ \mathsf{a}_{31} & \mathsf{a}_{32} & \mathsf{a}_{33} & \dots & \mathsf{a}_{3n} \\ \vdots & \vdots & \vdots & \dots & \\ \mathsf{a}_{m1} & \mathsf{a}_{m2} & \mathsf{a}_{m3} & \cdots & \mathsf{a}_{mn} \end{bmatrix} \mathsf{com}\,\mathsf{m}\,\mathsf{e}\,\mathsf{n} \in \mathsf{N}^*$$

3.2. Notação Condensada

Podemos também, abreviar essa representação da seguinte forma:

$$A = [a_{ij}]_{mxn}$$

Os elementos da matriz A são indicados por \mathbf{a}_{ij} de forma que:

 $i \in \{1, 2, 3, \dots, m\}$ (indicador da linha)

 $j \in \{1, 2, 3,n\}$ (indicador da coluna)

Exercício Resolvido

1) Escrever na forma explícita a matriz $A = (a_{ij})_{2x3}$, em que $a_{ij} = 2i + 3j$.

Solução:

A matriz pode ser indicada de forma genérica por

$$A_{2x3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}.$$

Utilizando a lei de formação dos elementos dessa matriz, temos:

$$a_{ii} = 2i + 3j$$

$$a_{11} = 2.1 + 3.1 = 5$$

$$a_{12} = 2.1 + 3.2 = 8$$

$$a_{13} = 2.1 + 3.3 = 11$$

$$a_{21} = 2.2 + 3.1 = 7$$

$$a_{22} = 2.2 + 3.2 = 10$$

$$a_{23} = 2.2 + 3.3 = 13$$

Assim,
$$A = \begin{pmatrix} 5 & 8 & 11 \\ 7 & 10 & 13 \end{pmatrix}$$

4. Matriz Quadrada

Uma matriz é quadrada se a quantidade de linhas for igual a quantidade de colunas. Uma matriz quadrada $\mathbf{n} \times \mathbf{n}$ é denominada matriz de ordem \mathbf{n} .

$$A_n = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

Com relação a uma matriz quadrada de ordem **n**, temos:

- diagonal principal (quando i = j para todo aij)
- diagonal secundária (quando i + j = n + 1)

5. Matriz Transposta

Seja A uma matriz de ordem m x n, denomina-se transposta de A a matriz de ordem n x m obtida, trocando-se de forma ordenada e simultânea as linhas pelas colunas.

Representa-se por: At

Exemplo
$$A_{2\times3} = \begin{pmatrix} 2 & 3 & 1 \\ 9 & 4 & 0 \end{pmatrix}$$
 $A^{t}_{3\times2} = \begin{pmatrix} 2 & 9 \\ 3 & 4 \\ 1 & 0 \end{pmatrix}$

Observação 1: $(A^t)^t = A$

Observação 2: Seja uma matriz A de ordem n.

Se A = A^t, então A é dita SIMÉTRICA

Exemplo: A =
$$\begin{pmatrix} 2 & 3 & 5 \\ 3 & 1 & 8 \\ 5 & 8 & 0 \end{pmatrix}$$

 Se A = - A^t, então A é dita ANTISSIMÉTRICA (-A indica matriz oposta de A que se obtém. trocando-se o sinal dos seus elementos)

Exemplo: A =
$$\begin{pmatrix} 0 & 1 & -3 \\ -1 & 0 & -4 \\ 3 & 4 & 0 \end{pmatrix}$$

6. Matriz Identidade

Uma matriz A de ordem \mathbf{n} é dita identidade, ou unidade se os elementos da diagonal principal forem iguais a 1, e os demais elementos são nulos.

Exemplos:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Importante: A matriz identidade é neutra na multiplicação de matrizes.

7. Matriz Nula

Uma matriz é dita nula quando todos seus elementos forem iguais a zero. A matriz Nula é neutra na soma de matrizes.

Notação: 0_{mxn}

$$O_{2x2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

8. Matriz Diagonal

É toda matriz de ordem n tal que $a_{ij} = 0$ para $i \neq j$.

Exemplo:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

9. Matriz Triangular

É toda matriz quadrada onde $a_{ij} = 0$ para i > j ou/e para i < i.

10. Igualdade de Matrizes

Duas matrizes A_{mxn} e B_{mxn} são iguais, se, e somente se, todos os elementos que ocupam a mesma posição são idênticos.

Notação: A = B

Exercício Resolvido

Dadas as matrizes
$$A = \begin{pmatrix} 2 & 5 \\ 10 & 0 \end{pmatrix} e B = \begin{pmatrix} x+y & 5 \\ 3x-y & 0 \end{pmatrix}$$
,

calcular x e y para que A e B sejam iguais.

Solução:

$$\begin{cases} x+y=2\\ 3x-y=10 \end{cases}$$

$$4x=12$$

$$x=3\Rightarrow 3+y=2\Rightarrow y=2-3\Rightarrow y=-1$$
 Portanto: $x=3$ e $y=-1$

11. Adição de matrizes

Dadas duas matrizes A = $(a_{ij})_{mxn}$ e B = $(b_{ij})_{mxn}$, denomina-se soma A + B a matriz C = $(c_{ij})_{mxn}$ onde $c_{ij} = a_{ij} + b_{ij}$, para todo i e j possíveis.

Exemplo:
$$\begin{bmatrix} 2 & 0 \\ 1 & 4 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 9 & 1 \\ 1 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 11 & 1 \\ 2 & 7 \\ 2 & 7 \end{bmatrix}$$

Observe que A +B existe se, e somente se, A e B forem de mesma ordem.

Propriedades:

- 1) A + B = B + A (propriedade comutativa)
- 2) A + (B + C) = (A + B) + C (propriedade associativa)
- 3) A + O = A (elemento neutro)
- 4) $(A + B)^t = A^t + B^t$

12. Subtração de matrizes

Dadas duas matrizes $A = (a_{ij})_{mxn} e B = (b_{ij})_{mxn}$, denomina-se subtração entre as matrizes A e B e indica-se por A - B, a matriz $C = (c_{ij})_{mxn}$ que se obtém somando-se as matrizes A e - B(oposta de B).

Exemplo:
$$\begin{bmatrix} 2 & 0 \\ 1 & 4 \\ 4 & 5 \end{bmatrix} - \begin{bmatrix} 9 & 1 \\ 1 & 3 \\ -2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 1 & 4 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} -9 & -1 \\ -1 & -3 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} -7 & -1 \\ 0 & 1 \\ 6 & 3 \end{bmatrix}$$

Assim como na adição, a subtração de matrizes só é válida para matrizes de mesma ordem.

13. Produto de um número por matriz

Dado um número real k e uma matriz $A_{m \times n}$, denomina-se produto de k por A e indica-se por k.A, à matriz que se obtém multiplicando-se todo elemento de A por k.

Exemplo:
$$3 \begin{bmatrix} 2 & 0 \\ 1 & 4 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 3 & 12 \\ 12 & 15 \end{bmatrix}$$

Propriedades:

Sendo x e y dois números reais e A e B duas matrizes de mesma ordem valem as seguintes propriedades:

1)
$$x \cdot (yA) = (xy) \cdot A$$

2)
$$x \cdot (A + B) = xA + xB$$

3)
$$(x + y) \cdot A = xA + yA$$

Exercícios Resolvidos

1) Determine a matriz X tal que X – 2A + B = 0, sendo dados

$$A = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} e B = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}.$$

Solução:

A equação X - 2A + B = 0 pode ser reescrita como: X = 2A - B. O exercício resume-se a encontrar a matriz resultante da subtração elemento a elemento entre 2A = B.

$$X = 2A - B$$

$$X = 2 \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}$$

$$X = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}$$

$$\Rightarrow X = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

2) Sabendo que $A = \begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix} e B = \begin{bmatrix} 5 & 1 \\ 3 & 2 \end{bmatrix}$, obtenha as

matrizes M e N, tais que
$$\begin{cases} 2M + N = A \\ 3M + 2N = B \end{cases}$$

Solução:

$$\begin{cases} 2M+N=A \ .(-2) \\ 3M+2N=B \end{cases} \Rightarrow \begin{cases} -4M-2N=-2A \\ 3M+2N=B \end{cases} +$$

$$\Rightarrow$$
 -M = -2A + B

$$\therefore M = 2A - B$$

Substituindo, vem :
$$M = 2 \cdot \begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix} - \begin{bmatrix} 5 & 1 \\ 3 & 2 \end{bmatrix} \Rightarrow M = \begin{bmatrix} 3 & 1 \\ 1 & -2 \end{bmatrix}$$

Voltando ao sistema, temos

$$\begin{cases} 2M + N = A \Rightarrow 2.(2A - B) + N = A \Rightarrow N = -3A + 2B \\ 3M + 2N = B \end{cases}$$

Substituindo, vem:

$$N = -3A + 2B$$

$$N = -3\begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix} + 2\begin{bmatrix} 5 & 1 \\ 3 & 2 \end{bmatrix} \Rightarrow N = \begin{bmatrix} -2 & -1 \\ 0 & 4 \end{bmatrix}$$

Portanto, as matrizes solução do sistema são:

$$M = \begin{bmatrix} 3 & 1 \\ 1 & -2 \end{bmatrix} e N = \begin{bmatrix} -2 & -1 \\ 0 & 4 \end{bmatrix}$$

Exercícios

01) (PUC – PR) Seja A = $(a_{ij})_{2x3}$ uma matriz dada por: $a_{ij} = \begin{cases} 2i, sei \geq j \\ i+j, sei < j \end{cases}$ Então, a matriz A, na forma de tabela é:

$$a)\begin{pmatrix} 2 & 3 & 4 \\ 4 & 4 & 4 \end{pmatrix}$$

$$b) \begin{pmatrix} 2 & 4 \\ 3 & 4 \\ 4 & 5 \end{pmatrix}$$

$$\begin{array}{ccc}
2 & 5 \\
3 & 4 \\
4 & 5
\end{array}$$

$$d)\begin{pmatrix} 2 & 3 & 4 \\ 4 & 4 & 5 \end{pmatrix}$$

e)
$$\begin{pmatrix} 2 & 5 \\ 3 & 4 \\ 5 & 4 \end{pmatrix}$$

02) Uma matriz quadrada A diz-se simétrica se $A = A^{t}$.

Assim, se a matriz
$$A = \begin{pmatrix} 2 & -1 & 2y \\ 2x+3 & 0 & z-1 \\ 4 & 3 & 2 \end{pmatrix}$$
 é simétrica,

então x é igual a:

b)
$$-1$$

03) (PUC – RS) Num jogo, foram sorteados 6 números para compor uma matriz $M=(m_{ij})$ de ordem 2×3 . Após o sorteio, notou-se que esses números obedeceram à regra $m_{ij}=4i-j$. Assim, a matriz M é igual a

a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 & 2 & 1 \\ 7 & 6 & 5 \end{bmatrix}$$

d)
$$\begin{bmatrix} 3 & 2 \\ 7 & 6 \\ 11 & 10 \end{bmatrix}$$

04) (UFSC) Dadas as matrizes:

$$A = \begin{pmatrix} 2x+1 & -3y & -1 \\ 0 & 4 & x+z \end{pmatrix} e B = \begin{pmatrix} x & 0 \\ 12 & 4 \\ -1 & 6 \end{pmatrix} Se A = B^{t}, o$$

valor de x.y.z é:

05) Escreva, na forma explícita ,cada matriz abaixo:

a)
$$A = (a_{ij})_{2x2}$$
, com $a_{ij} = i + j$

b) A =
$$(a_{ij})_{3x2}$$
, com $a_{ij} = 3i - j^2$

c)
$$A = (a_{ij})_{3x2}$$
, $com a_{ij} = \begin{cases} 1, se \ i = j \\ i^2, se \ i \neq j \end{cases}$

06) Uma matriz se diz antissimétrica se A^t = −A. Nessas condições, se a matriz A é antissimétrica, então, x + y + z é igual a:

$$A = \begin{bmatrix} x & y & z \\ 2 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$$

07) Dada a matriz $A = [aij]_{2 \times 3}$ definida por

$$aij = \begin{cases} 3i + j, se i < j \\ 7, se i = j & o \text{ valor da expressão} \\ i^2 + j, se i > j \\ 2a_{23} + 3a_{22} - a_{21} \text{ \'e}: \end{cases}$$

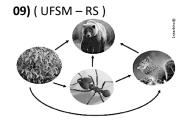
08) (UFRJ) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes cada um consumiu e como a despesa foi dividida:

$$S = \begin{bmatrix} 4 & 1 & 4 \\ 0 & 2 & 0 \\ 3 & 1 & 5 \end{bmatrix} e D = \begin{bmatrix} 5 & 5 & 3 \\ 0 & 3 & 0 \\ 2 & 1 & 3 \end{bmatrix}$$

S refere-se às despesas de sábado e D às de domingo. Cada elemento a_{ij} nos dá o número de chopes que i pagou para j, sendo Antônio o número 1, Bernardo o número 2 e Cláudio o número 3. Assim, no sábado Antônio pagou 4 chopes que ele próprio bebeu, 1 chope de Bernardo e 4 de Cláudio (primeira linha da matriz S).

a) Quem bebeu mais chope no fim de semana?

b) Quantos chopes Cláudio ficou devendo para Antônio?



O diagrama dado representa a cadeia alimentar simplificada de um determinado ecossistema. As setas indicam a espécie de que a outra espécie se alimenta. Atribuindo valor 1 quando uma espécie se alimenta de outra e zero, quando ocorre o contrário, tem-se a seguinte tabela:

	Urso	Esquilo	Inseto	Planta
Urso	0	1	1	1
Esquilo	0	0	1	1
Inseto	0	0	0	1
Planta	0	0	0	0

A matriz $A = (a_{ij})_{4x4}$, associada à tabela, possui a seguinte lei de formação:

$$\text{a) } a_{ij} = \begin{cases} 0, \text{ se } i \leq j \\ 1, \text{ se } i > j \end{cases}$$

b)
$$a_{ij} = \begin{cases} 0, \text{ se } i = j \\ 1, \text{ se } i \neq j \end{cases}$$

c)
$$a_{ij} = \begin{cases} 0, \text{ se } i \geq j \\ 1, \text{ se } i < j \end{cases}$$

d)
$$a_{ij} = \begin{cases} 0, \text{ se } i \neq j \\ 1, \text{ se } i = j \end{cases}$$

e)
$$a_{ij} = \begin{cases} 0, \text{ se } i < j \\ 1, \text{ se } i > j \end{cases}$$

10) (UEL – PR) Conforme dados da Agência Nacional de Aviação Civil (ANAC), no Brasil, existem 720 aeródromos públicos e 1814 aeródromos privados certificados. Os programas computacionais utilizados para gerenciar o tráfego aéreo representam a malha aérea por meio de matrizes. Considere a malha aérea entre quatro cidades com aeroportos por meio de uma matriz. Sejam as cidades A, B, C e D indexadas nas linhas e colunas da matriz 4×4 dada a seguir. Colocase 1 na posição X e Y da matriz 4×4 se as cidades X e Y possuem conexão aérea direta, caso contrário coloca-se 0. A diagonal principal, que corresponde à posição X = Y, foi preenchida com 1.

Considerando que, no trajeto, o avião não pode pousar duas ou mais vezes em uma mesma cidade nem voltar para a cidade de origem, assinale a alternativa correta.

- a) Pode-se ir da cidade A até B passando por outras cidades.
- b) Pode-se ir da cidade D até B passando por outras cidades.
- c) Pode-se ir diretamente da cidade D até C.
- d) Existem dois diferentes caminhos entre as cidades A e B.
- e) Existem dois diferentes caminhos entre as cidades A e C.

11) (UDESC – SC) Sejam X e Y matrizes de ordem dois por dois tais que X + Y = $\begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$ e X – Y = $\begin{bmatrix} 1 & 2 \\ 6 & 11 \end{bmatrix}$; logo

a soma dos elementos da diagonal principal da matriz X é:

- a) 14
- b) 7
- c) 9
- d) 16
- e) 8

12) Considere as matrizes A =
$$\begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}$$
 e B = $\begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$

a) Obter a matriz P tal que A + X = B

b) Obter as matrizes X e Y tal que: $\begin{cases} X + Y = 3A \\ X - Y = -B \end{cases}$

GABARITO - AULA 01 - MATRIZES - PARTE I

1) d 2) a 3) c 4) 28
5) a)
$$\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & -1 \\ 5 & 2 \\ 8 & 5 \end{pmatrix}$ c) $\begin{bmatrix} 1 & 1 \\ 4 & 1 \\ 9 & 9 \end{bmatrix}$

12) a)
$$P = \begin{pmatrix} -2 & 2 \\ -2 & -2 \end{pmatrix}$$

b) $X = \begin{pmatrix} 3 & 0 \\ 4 & 1 \end{pmatrix}$ $Y = \begin{pmatrix} 3 & 3 \\ 5 & -1 \end{pmatrix}$

MATRIZES – PARTE II PRODUTO DE MATRIZES

Produto de Matrizes

Para entendermos o processo que envolve o produto de matrizes, propomos a seguinte situação abaixo:

Durante a 1ª fase da Copa do Mundo de 2018 na Rússia, o grupo E era formado por 4 países: Brasil, Suíça, Sérvia e Costa Rica. Os resultados estão registrados abaixo em uma matriz A, de ordem 4 x 3.

Grupo E

Equi	pe	VIT	Е	D
1	Brasil	2	1	0
2	+ Suíça	1	2	0
3	Sérvia	1	0	2
4	Costa Rica	0	1	2

$$A = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{vmatrix}$$

Pelo regulamento da competição, cada resultado de vitória, empate ou derrota tem pontuação descrita pela tabale abaixo. Vamos representar essa tabela pela matriz B, de ordem 3 x 1

Número de Pontos				
Vitória	3			
Empate	1			
Derrota	0			

Então:
$$B = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

Terminada a 1ª fase da Copa do Mundo, a pontuação é obtida com o total de pontos feitos por cada país. Essa pontuação pode ser registrada numa matriz que é representada por AB (produto de A por B). Observe:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix} e B = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

Brasil: 2.3 + 1.1 + 0.0 = 7

Suíça: 1.3 + 2.1 + 0.0 = 5

Sérvia: 1.3 + 0.1 + 2.0 = 3

Costa Rica: 0.3 + 1.1 + 2.0 = 1

Portanto: A.B =
$$\begin{bmatrix} 7 \\ 5 \\ 3 \\ 1 \end{bmatrix}$$

O exemplo acima sugere como deve ser efetuada o produto de matrizes. Observe que: $A_{4\times3}\cdot B_{3\times1}=AB_{4\times1}$

Perceba que definimos o produto A.B de duas matrizes quando o número de colunas da primeira matriz é igual ao número de linhas da segunda matriz. Além disso, note que A.B possui a quantidade de linhas da primeira matriz e a quantidade de colunas da segunda matriz.

Definição do Produto de Matrizes

Considere as matrizes $A = [a_{ij}]_{m \times n}$ e a matriz $B = [b_{jk}]_{n \times p}$. O produto de A por B é a matriz $C = [c_{ik}]_{m \times p}$, de tal forma que os elementos c_{ik} são obtidos assim:

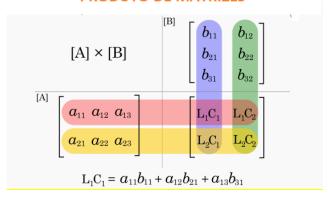
 $c_{ik} = a_{i1} \cdot b_{1k} + a_{i2} \cdot b_{2k} + a_{i3} \cdot b_{3k} + \dots + a_{in} \cdot b_{nk}$

ou seja:
$$\sum_{j=1}^{n} a_{ij} b_{jk}$$

para todo $i \in \{1, 2,, m\}$ e todo $k \in \{1, 2, ..., p\}$.

Abaixo segue o processo prático para se obter cada elemento do produto da matriz A por B

PRODUTO DE MATRIZES



Exercícios Resolvidos

1) Sendo A =
$$\begin{pmatrix} 5 & 1 \\ 3 & 2 \end{pmatrix}$$
 e B = $\begin{pmatrix} 4 & 6 \\ 1 & 3 \end{pmatrix}$, determine A.B e em seguida B.A.

Solução:

$$A.B = \underbrace{\begin{pmatrix} 5 & 1 \\ 3 & 2 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} 4 & 6 \\ 1 & 3 \end{pmatrix}}_{B} = \begin{bmatrix} 5.4 + 1.1 & 5.6 + 1.3 \\ 3.4 + 2.1 & 3.6 + 2.3 \end{bmatrix}$$

$$A.B = \begin{pmatrix} 21 & 33 \\ 14 & 24 \end{pmatrix}$$

B.A =
$$\begin{pmatrix} 4 & 6 \\ 1 & 3 \end{pmatrix}$$
. $\begin{pmatrix} 5 & 1 \\ 3 & 2 \end{pmatrix}$ = $\begin{pmatrix} 4.5+6.3 & 4.1+6.2 \\ 1.5+3.3 & 1.1+3.2 \end{pmatrix}$
B.A = $\begin{pmatrix} 38 & 16 \\ 14 & 7 \end{pmatrix}$

Comparando os resultados, observamos que A.B ≠ B.A, ou seja, em geral não vale a comutatividade na multiplicação de matrizes.

2) Sejam
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -1 & 4 \end{bmatrix}_{3 \times 2} eB = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 4 \end{bmatrix}_{2 \times 3}$$

determine A.B.

Solução:

$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -1 & 4 \end{bmatrix}_{3 \times 2} \cdot \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 4 \end{bmatrix}_{2 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ 0.1 + 1.(-2) & 0.2 + 1.0 & 0.3 + 1.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 + 3.0 & 2.4 \\ -1.1 + 4.(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.(-2) & 2.2 & 2.4 \\ -1.1 + 4.(-2) & 2.2 & 2.4 \end{bmatrix}_{3 \times 3} = \begin{bmatrix} 2.1 + 3.$$

$$\begin{bmatrix} 2+(-6) & 4+0 & 6+12 \\ 0+(-2) & 0+0 & 0+4 \\ -1+(-8) & -2+0 & -3+16 \end{bmatrix}_{3\times3} = \begin{bmatrix} -4 & 4 & 18 \\ -2 & 0 & 4 \\ -9 & -2 & 13 \end{bmatrix}_{3\times3}$$

3) (UNICAMP – SP) Sejam a e b números reais tais que a matriz $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ satisfaz a equação $A^2 = aA + bI$, em

que I é a matriz identidade de ordem $\ 2.\ Logo,$ o produto ab é igual a

- a) -2.
- b) -1.
- c) 1.
- d) 2.

Solução

Tem-se que

$$A^{2} = aA + bI \Leftrightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} =$$

$$a\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + b\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a+b & 2a \\ 0 & a+b \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} a+b=1 \\ 2a=4 \end{cases}$$

$$\Leftrightarrow \begin{cases} a=2 \\ b=-1 \end{cases}$$

Por conseguinte, vem $a \cdot b = 2 \cdot (-1) = -2$. Portanto a resposta correta é o item A

4) (UECE – CE) Considerando as matrizes $M_1=\begin{pmatrix}0&1\\1&1\end{pmatrix}$, $M_2=M_1\cdot M_1, \qquad M_3=M_2\cdot M_1,\ldots, \qquad M_n=M_{n-1}\cdot M_1, \quad o$ número situado na segunda linha e segunda coluna da matriz M_{10} é

- a) 56.
- b) 67.
- c) 78.
- d) 89.

Solução:

$$M_n = M_{n-1} \cdot M_1$$

$$M_{10} = M_9 \cdot M_1$$

$$M_9 = M_8 \cdot M_1$$

E assim sucessivamente até M_{10} . Conclui-se portanto que:

$$M_{10} = (M_1)^{10}$$

Fazendo essas multiplicações, têm-se:

$$M_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$M_3 = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$

$$M_4 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$$

$$M_5 = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 5 & 8 \end{pmatrix}$$

Analisando-se o número situado na segunda linha e segunda coluna das matrizes calculadas, percebe-se a seguinte ordem: 1, 2, 3, 5, 8... Por conta da própria multiplicação de matrizes, tal elemento sempre é a soma dos dois anteriores. Ou seja, em M_3 ele será a soma de 1+2, em M_4 ele será a soma de 2+3 e assim por diante. Logo, pode-se prever o valor que ele assumirá em M_{10} :

$$M_3 = 1 + 2 = 3$$

$$M_4 = 2 + 3 = 5$$

$$M_5 = 3 + 5 = 8$$

$$M_6 = 5 + 8 = 13$$

$$M_7 = 8 + 13 = 21$$

$$M_8 = 13 + 21 = 34$$

$$M_9 = 31 + 34 = 55$$

$$M_{10} = 34 + 55 = 89$$

Portanto a resposta correta é o item D

PROPRIEDADES DO PRODUTO DE MATRIZES

O produto de matrizes apresenta as seguintes propriedades:

- 1) Associativa: A.(B.C) = (A.B).C para quaisquer matrizes $A = [a_{ij}]_{m \times n}$, $B = [b_{jk}]_{n \times p}$ e $C = [c_{kl}]_{m \times p}$
- 2) Distributiva à direita em relação à adição: (A +B).C = A.C + B.C para quaisquer matrizes A = $[a_{ij}]_{m \times n}$, B = $[b_{ij}]_{m \times n}$ e C = $[c_{jk}]_{n \times p}$
- 3) Distributiva à esquerda: C.(A + B) = C.A + C.B para quaisquer matrizes A = $[a_{ij}]_{m \times n}$, B = $[b_{ij}]_{m \times n}$ e C = $[c_{jk}]_{p \times m}$

- 4) (x.A).B = A(x.B) = x.(A.B) quaisquer que sejam o número x e as matrizes $A = [a_{ij}]_{m \times n}$ e $B = [b_{jk}]_{n \times p}$
- 5) Elemento neutro: A . $I_n = I_m$. A = A qualquer que seja a matriz A = $[a_{ij}]_{m \times n}$
- 6) Transposta do produto: $(A.B)^t = B^t.A^t$ quaisquer que sejam as matrizes $A = [a_{ij}]_{m \times n}$ eB = $[b_{jk}]_{n \times p}$ **Observações:**
- 1) Na multiplicação de matrizes geralmente A.B ≠ B.A. Se A.B = B.A dizemos que A e B se comutam.
- 2) Na multiplicação de matrizes não vale a lei do anulamento, ou seja podemos ter A.B = 0 mesmo com $A \neq 0$ B $\neq 0$.
- 3) Se A.B = A.C, isto não implica que B = C. Em matrizes não vale a lei do cancelamento.

Exercícios

- 01) (UEL PR) Sobre as sentenças:
 - I. O produto de matrizes A_{3x2} . B_{2x1} é uma matriz 3x1. II. O produto de matrizes A_{5x4} . B_{5x2} é uma matriz 4x2. III. O produto de matrizes A_{2x3} . B_{3x2} é uma matriz quadrada 2×2 .

É verdade que

- a) somente I é falsa
- b) somente II é falsa
- c) somente III é falsa
- d) somente I e III são falsas.
- e) I, II e III são falsas
- **02)** (UEL-PR) Sejam as matrizes A e B, respectivamente, 3 x 4 e p x q. Se a matriz A.B é 3x5, então é verdade que:
 - a) p = 5 e q = 5
 - b) p = 4 e q = 5
 - c) p = 3 e q = 5
 - d) p = 3 e q = 4
 - e) p = 3 e q = 3
- **03)** (UEPG PR) As matrizes A, B e C são do tipo m x 4, n x r e 5 x p, respectivamente. Se a matriz transposta de (AB)C é do tipo 3 x 6, assinale o que for correto.

02.
$$m = r + 1$$

$$04. p = 2m$$

16.
$$n + r = p + m$$

04) Dadas as matrizes A = $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$ e B = $\begin{pmatrix} 5 & 3 \\ -1 & 0 \end{pmatrix}$ e

$$C = \begin{pmatrix} 3 & 6 \\ -2 & -4 \end{pmatrix}$$
. Determine:

- a) A.B
- b) B.A
- c) (A.B)^t
- d) B^t.A^t
- e) A.I₂
- f) A.C
- g) matriz X tal que X.B = A
- **05)** (PUC PR) O elemento c_{22} da matriz C = A.B, onde

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -1 & 0 & 0 & 1 \end{bmatrix} e B = \begin{bmatrix} 7 & 1 & 2 \\ 8 & 1 & 1 \\ 5 & 0 & 0 \\ 4 & 0 & 1 \end{bmatrix}, \text{ \'e}:$$

- a) 0
- b) 2
- c) 6
- d) 11
- e) 22

06) (UFSC – SC) Dadas as matrizes:
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 4 & -1 & 2 \end{pmatrix}$$
; B

$$= \begin{pmatrix} 2 & -1 & 1 \\ 0 & 3 & 0 \\ 4 & 2 & 1 \end{pmatrix}; \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad e \quad seja$$

P = (2A - C).B. Determine a soma dos elementos da diagonal principal da matriz P.

07) (PUC – RS) Numa aula de Álgebra Matricial dos cursos de Engenharia, o professor pediu que os alunos resolvessem a seguinte questão:

Se
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, então A^2 é igual a

- a) $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
- b) $\begin{bmatrix} 1 & 4 \\ 9 & 16 \end{bmatrix}$
- c) 7 10 15 22
- d) $\begin{bmatrix} 5 & 11 \\ 11 & 25 \end{bmatrix}$
- e) $\begin{bmatrix} 5 & 5 \\ 25 & 25 \end{bmatrix}$

08) Em cada equação matricial abaixo, determine os valores de x e y

a)
$$\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} x & 1 \\ -2 & y \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ -5 & 9 \end{pmatrix}$$

b)
$$\begin{pmatrix} 4 & -3 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} x & 1 \\ y & 2 \end{pmatrix} = \begin{pmatrix} -4 & -2 \\ 7 & 3 \end{pmatrix}$$

09) (PUC-SP) Se A =
$$\begin{pmatrix} 1 & 4 \\ 1 & 2 \end{pmatrix}$$
 e B = $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, então a

matriz X, de ordem 2, tal que A.X = B, é:

$$a)\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$b)\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$$

$$c)\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$$

$$d) \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{pmatrix}$$

$$e) \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{6} \end{pmatrix}$$

10) (ENEM) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia calcular as médias anuais dessas disciplinas usando produto de matrizes. Todas as provas possuíam o mesmo peso, e a tabela que ele conseguiu é mostrada a seguir.

	1º bimestre	2º bimestre	3º bimestre	4º bimestre
Matemática	5,9	6,2	4,5	5,5
Português	6,6	7,1	6,5	8,4
Geografia	8,6	6,8	7,8	9,0
História	6,2	5,6	5,9	7,7

Para obter essas médias, ele multiplicou a matriz obtida a partir da tabela por

a)
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$ e) $\begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$

- 11) Assinale a(s) proposição(ões) CORRETA(S).
 - 01. Se A e B são matrizes tais que A.B é a matriz nula, então A é a matriz nula ou B é a matriz nula.
 - 02. Sejam as matrizes M e P, respectivamente, de ordens 5 x 7 e 7 x 5. Se R = M.P, então a matriz R² tem 625 elementos.
 - 04. Se A = $\begin{pmatrix} 1 & 4 \\ 1 & 2 \end{pmatrix}$ e B = $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, então o maior elemento da matriz X, de ordem 2, tal que A.X = B, é 1.
 - 08. Sabendo que A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ tal que } A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$ então a matriz A^{50} é $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - 16. Sendo A = $\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$, B = $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ I = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ e $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ e sabendo que X e Y são matrizes quadradas de ordem 2, a soma dos elementos da matriz X, na resolução do sistema $\begin{cases} AX + Y = 0 \\ BX + Y = I \end{cases}$ vale 2.
- 12) (UEM PR) Sobre matrizes, assinale o que for correto.
- 01) A matriz $A = [a_{ij}]_{n \times n}$, com $a_{ij} = 0$ se i < j, é uma matriz triangular inferior.
- 02) Uma matriz $A=[a_{ij}]_{n\times n}$ é chamada matriz diagonal se $a_{ii}=0, \text{ sempre que } i=j.$

- 04) Considere uma matriz $A = [a_{ij}]_{3\times5}$. Ela será a matriz identidade se $\begin{cases} a_{ij} = 1, i = j \\ a_{ii} = 0, i \neq j \end{cases}$.
- 08) Ao somarmos uma matriz 3×2 com uma 2×3 , teremos uma matriz 3×3 .
- 16) Se A é uma matriz $m \times n$, então a multiplicação da matriz A por sua transposta A^t será uma matriz $m \times m$.

GABARITO – AULA 02 – MATRIZES – PARTE II

1) b 2) b 3) 18
4) a)
$$\begin{pmatrix} 7 & 6 \\ 14 & 12 \end{pmatrix}$$
 b) $\begin{pmatrix} 22 & 33 \\ -2 & -3 \end{pmatrix}$ c) $\begin{pmatrix} 7 & 14 \\ 6 & 12 \end{pmatrix}$
d) $\begin{pmatrix} 7 & 14 \\ 6 & 12 \end{pmatrix}$ e) $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$ f) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ g) $\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$
5) d 6) 32 7) c
8) a) $x = 3$ $y = 2$ b) $x = 5$ $y = 8$

DETERMINANTES – PARTE I

1. Introdução

Dada uma matriz quadrada de ordem **n**, podemos associar a ela, através de certas operações, um número real chamado **determinante da matriz**.

$$A_n \xrightarrow{determinante} \mathfrak{R}$$

Podemos simbolizar o determinante de uma matriz por

duas barras verticais. Assim se
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

a matriz A, indicamos o determinante de A por

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

2. Cálculo

• 1ª ORDEM

Seja a matriz $A = [a_{11}]$, denomina-se o determinante de A o próprio elemento a_{11} e indica-se por:

$$\det A = |a_{11}| = a_{11}$$

Exemplos:

- a) Se A = [2], então det A = |2| = 2
- b) Se B = [-3], então det B = |-3| = -3

• 2ª ORDEM

Seja a matriz A = $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, o determinante dessa

matriz é o número real $a_{11} \bullet a_{22} - a_{12} \bullet a_{21}$ e indica-se por:

$$\begin{vmatrix} \det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \bullet a_{22} - a_{12} \bullet a_{21}$$

Exemplo: Calcular o determinante da matriz $A = \begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}.$

$$\det A = \begin{vmatrix} 5 & 2 \\ 4 & 3 \end{vmatrix} = 5.3 - 2.4 = 7$$

• 3ª ORDEM

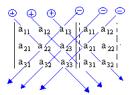
Considere a matriz
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, o seu

determinante é o número:

$$a_{11}, a_{22}, a_{33} + a_{21}, a_{32}, a_{13} + a_{12}, a_{23}, a_{31} - a_{13}, a_{22}, a_{31} - a_{12}, a_{21}, a_{33} - a_{11}, a_{23}, a_{32}$$

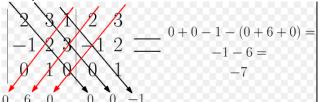
Para facilitar a memorização do cálculo acima vamos apresentar o dispositivo de "Sarrus". Acompanhe:

- Repete-se ao lado do determinante as duas primeiras colunas.
- Obtenha os produtos indicados abaixo como mostra o esquema.

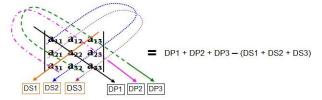


$$= -(a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33}) + (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32})$$

Exemplo 1:



Caso você não tenha se adaptado a esse método acima, temos também o dispositivo abaixo:



Onde:

 $DP_1 = a_{11.}a_{22.}a_{33}$

 $DP_2 = a_{31.}a_{12.}a_{23}$

e assim por diante.

Exemplo 2:

$$\begin{vmatrix} 2 & 3 & -1 & 2 & 3 \\ 4 & 1 & 2 & 4 & 1 \\ -3 & 2 & 1 & -3 & 2 \end{vmatrix}$$

$$= 2.1.1 + 3.2.(-3) - 1.4.2 - (-1).1(-3) - (2.2.2) - (3.4.1)$$

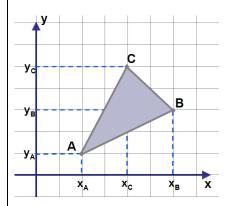
$$= 2 - 18 - 8 - 3 - 8 - 12$$

$$- 47$$

SAIBA MAIS!

Dentre as várias aplicações dos determinantes, temos o cálculo da área de um triângulo em função das coordenadas dos vértices desse triângulo. Acompanhe:

Considere os três pontos $A(x_A, y_A)$; $B(x_B, y_B)$; $C(x_C, y_C)$ que representam os vértices do triângulo ABC da figura abaixo.

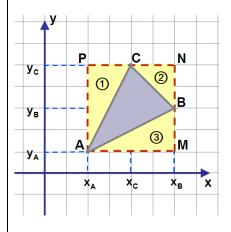


A área do triângulo ABC é dada pela fórmula:

$$A = \frac{1}{2} \begin{bmatrix} x_{A} & y_{A} & 1 \\ x_{B} & y_{B} & 1 \\ x_{C} & y_{C} & 1 \end{bmatrix}$$

Justificativa:

Considere a figura abaixo:



A partir da figura, temos:

$$\mathbf{A}_{\Delta ABC} = \mathbf{A}_{retAMNP} - \mathbf{A}_{\Delta 1} - \mathbf{A}_{\Delta 2} - \mathbf{A}_{\Delta 3} \ \ \text{(I)}$$

$$A_{retAMNP} = (x_B - x_A)(y_C - y_A) (II)$$

$$A_{\Delta 1} = \frac{(x_C - x_A)(y_C - y_A)}{2} (III)$$

$$A_{\Delta 2} = \frac{(x_B - x_C)(y_C - y_B)}{2} (IV)$$

$$A_{\Delta 3} = \frac{(x_B - x_A)(y_B - y_A)}{2} (V)$$

Substituindo (II), (III), (IV), (V) em (I), vem:

$$\mathsf{A}_{\Delta\mathsf{ABC}} = \frac{\mathsf{x}_{\mathsf{B}} \mathsf{y}_{\mathsf{C}} + \mathsf{x}_{\mathsf{C}} \mathsf{y}_{\mathsf{A}} + \mathsf{x}_{\mathsf{A}} \mathsf{y}_{\mathsf{B}} - \mathsf{x}_{\mathsf{C}} \mathsf{y}_{\mathsf{B}} - \mathsf{x}_{\mathsf{B}} \mathsf{y}_{\mathsf{A}} - \mathsf{x}_{\mathsf{A}} \mathsf{y}_{\mathsf{C}}}{2}$$

que pode ser escrito assim:

$$A = \frac{1}{2} \cdot \begin{vmatrix} x_{A} & y_{A} & 1 \\ x_{B} & y_{B} & 1 \\ x_{C} & y_{C} & 1 \end{vmatrix}$$

Exercícios

01) Considere as matrizes $A = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix} e B = \begin{bmatrix} 1 & 0 \\ 3 & 5 \end{bmatrix}$.

Calcule:

- a) det A
- b) det B
- c) A + B
- d) A.B
- e) det (A + B)
- f) det (A.B)
- **02)** Com base no exercício acima, julgue o item abaixo:

Sejam A e B matrizes de ordem n. É verdade que: det(A + B) = det A + det B

- **03)** Considere a matriz $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 5 & 0 \\ 4 & 0 & 2 \end{bmatrix}$. Calcule:
 - a) det A
- b) det A^t

04) Resolva as seguintes equações:

a)
$$\begin{vmatrix} x & x+2 \\ 5 & 7 \end{vmatrix} = 0$$
 b) $\begin{vmatrix} x & x \\ 5 & x \end{vmatrix} = 0$

c)
$$\begin{vmatrix} 2 & 3 & 1 \\ x & 1 & x \\ 2 & 0 & 1 \end{vmatrix} = 15$$
 d) $\begin{vmatrix} 2 & 1 & 3 \\ 4 & -1 & x - 1 \\ x & 0 & x \end{vmatrix} = 12$

05) (UFSC
$$-$$
 SC) Em \mathbb{R} , a solução da equação
$$\begin{vmatrix} 2 & x & 3 \\ -2 & -x & 4 \\ 1 & -3 & x \end{vmatrix} = 175 \text{ \'e}:$$

06) Para que o determinante da matriz
$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & b \\ 1 & 2 & 1 \end{pmatrix}$$
 seja

3, o valor de b deve ser igual a

- a) 2
- b) 0
- c) -1
- d) -2
- e) 1
- **07)** (UNESP- SP) Foi realizada uma pesquisa, num bairro de determinada cidade, com um grupo de 500 crianças de 3 a 12 anos de idade. Para esse grupo, em função da idade x da criança, concluiu-se que o peso médio p(x), em quilogramas, era dado pelo determinante da matriz A, onde

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 3 & 0 & -x \\ 0 & 2 & \frac{2}{3} \end{bmatrix}$$

Com base na fórmula p(x) = det A, determine:

- a) o peso médio de uma criança de 5 anos;
- b) a idade mais provável de uma criança cujo peso é 30 kg.

08) (UNIGRANRIO) Considere as funções
$$f(x) = \begin{vmatrix} x & 0 & x \\ 1 & x & 2 \\ 2 & 1 & 1 \end{vmatrix}$$

$$e \ g(x) = \begin{vmatrix} x & 11 & -4 \\ 10 & 11 & x \\ 1 & 2 & 0 \end{vmatrix}. \ \text{Desta forma, pode-se afirmar que}$$

o ponto de interseção das funções f(x) e g(x), é:

a)
$$(6,30)$$
 b) $(9,-90)$ c) $(9,72)$ d) $(6,-42)$ e) $(6,42)$

GABARITO – AULA 03 – DETERMINANTES – PARTE I

1) a) 7 b) 5 c)
$$\begin{bmatrix} 4 & 5 \\ 4 & 9 \end{bmatrix}$$
 d) $\begin{bmatrix} 18 & 25 \\ 13 & 20 \end{bmatrix}$ e) 16 f) 35

2) Falso

3) a) - 102 b) - 102

4) a) {5} b) {0, 5} c) {5} d) {-2, 6} **5)** 19 **6)** b

7) a) 18kg b) 11 anos

8) d

COMPLEMENTO DA AULA 03

Até agora estudamos métodos para calcular determinantes de matrizes de ordem 1, 2 e 3. Este complemento da aula 3 visa definir o cálculo de determinantes de qualquer matriz de ordem n. Veremos nesse módulo o Teorema de Laplace e a Regra de Chió.

1. Cofator de um elemento de uma matriz quadrada de ordem n $(n \ge 2)$

Considere uma matriz quadrada A, de ordem n, e o elemento a_{ii} pertencente a A.

Cofator de um elemento a_{ij} é o número real que se obtém multiplicando o número $\left(-1\right)^{i+j}$ pelo determinante da matriz obtida, quando se elimina em A a linha i e a coluna j. Vamos indicar o cofator por C_{ij} .

Acompanhe o exemplo:

Dada a matriz A =
$$\begin{bmatrix} 3 & 1 & -2 \\ 4 & 0 & 2 \\ 3 & 7 & 8 \end{bmatrix}$$
, calcular $C_{11} e \ C_{32}$

Resolução:

$$C_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 0 & 2 \\ 7 & 8 \end{vmatrix} = 1 \cdot (-14) = -14$$

$$C_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 3 & -2 \\ 4 & 2 \end{vmatrix} = -1 \cdot (6+8) = -14$$

2. Teorema de Laplace

Seja a matriz quadrada de ordem ${\bf n}$ define-se como determinante dessa matriz ${\bf a}$ soma dos produtos de cada elemento ${\bf a}_{ii}$ de uma fila pelo seu cofator ${\bf C}_{ii}$.

Acompanhe o exercício resolvido:

Calcule o determinante da matriz
$$A = \begin{pmatrix} 2 & 3 & 4 & -1 \\ 0 & 0 & 2 & 0 \\ 3 & -1 & 1 & 1 \\ -1 & 0 & 2 & 3 \end{pmatrix}$$

Solução:

Inicialmente vamos fixar a linha 2 (possui uma grande quantidade de zeros).

Então:

$$\det A = a_{21}.C_{21} + a_{22}.C_{22} + a_{23}.C_{23} + a_{24}.C_{24}$$

Como os elementos a_{21} , a_{22} .e a_{24} são nulo, vem:

$$\det A = a_{23}.C_{23}$$

det A = 2.
$$(-1)^{2+3}$$
. $\begin{vmatrix} 2 & 3 & -1 \\ 3 & -1 & 1 \\ -1 & 0 & 3 \end{vmatrix}$

$$\det A = 2.(-1).(-35)$$

 $\det A = 70$

3. Regra de Chió

A regra de Chió é mais uma alternativa para o cálculo de determinantes de matriz quadrada de ordem $n \ (n \ge 2)$. Com essa regra pode-se passar uma matriz de ordem $n \ para uma outra de ordem <math>n \ -1$, com o mesmo determinante. É necessário, pois, que a matriz possua pelo menos um dos seus elementos igual a 1.

Sendo assim, a regra de Chió consiste em:

- a) Eliminar da matriz a linha e a coluna que contém o elemento a_{ii} = 1.
- b) de cada um dos elementos restantes subtrair o produto dos elementos correspondentes na linha e coluna eliminadas.
- c) calcula-se o determinante da matriz obtida
- d) por fim, multiplica-se o determinante assim obtido por $(-1)^{i+j}$.

Acompanhe o exercício resolvido:

Exercício Resolvido

Calcule o determinante da matriz $A = \begin{pmatrix} 1 & 5 & 2 \\ 4 & 8 & 3 \\ 1 & 2 & -1 \end{pmatrix}$

Resolução:

 Um dos elementos da matriz A que é igual a 1 é o a₁₁. Elimina-se então, a linha e a coluna onde está o elemento a₁₁.

Perceba que cada elemento restante está associado a dois elementos que foram eliminados, um da linha e outro da coluna.

 Subtrai-se de cada elemento restante o produto dos dois associados que foram eliminados

$$\begin{vmatrix} 8 - 4.5 & 3 - 4.2 \\ 2 - 1.5 & -1 - 1.2 \end{vmatrix} = \begin{vmatrix} -12 & -5 \\ -3 & -3 \end{vmatrix} = 21$$

• Multiplica-se o determinante assim obtido por $(-1)^{i+j}$

$$\det A = \left(-1\right)^{1+1}.21 \rightarrow \det A = 21$$

DETERMINANTES - PARTE II

Todas as propriedades enunciadas abaixo são válidas para matrizes quadradas de ordem \mathbf{n} .

1) Casos onde o determinante é nulo

• Se uma matriz possui uma fila de elementos iguais a zero, o determinante é nulo

Exemplo:
$$\begin{vmatrix} 0 & 3 & 9 \\ 0 & -8 & 3 \\ 0 & 4 & 1 \end{vmatrix} = 0$$

• Se uma matriz possui duas filas paralelas iguais, então o determinante é nulo.

Exemplo:
$$\begin{vmatrix} 2 & 8 & 2 \\ 3 & 5 & 3 \\ 1 & -6 & 1 \end{vmatrix} = 0$$
 $C_1 = C_3$

• Se uma matriz possui duas filas paralelas proporcionais, o determinante será nulo.

Exemplo:
$$\begin{vmatrix} 2 & 3 & 5 \\ 4 & 6 & 10 \\ 7 & 0 & -3 \end{vmatrix} = 0$$
 $\boxed{L_2 = 2.L_1}$

 Se uma fila de uma matriz for uma combinação linear de duas outras.

Exemplos:
$$\begin{vmatrix} 3 & 5 & 1 \\ 0 & 4 & 2 \\ 3 & 9 & 3 \end{vmatrix} = 0$$
 $L_3 = L_1 + L_2$

$$\begin{vmatrix} 3 & 5 & 1 \\ 1 & 2 & 3 \\ 7 & 12 & 5 \end{vmatrix} = 0 \qquad \boxed{L_3 = 2.L_1 + L_2}$$

2) Se trocarmos entre si a posição duas filas paralelas de uma matriz, o determinante muda de sinal.

3) Se multiplicarmos uma fila de uma matriz por um número k, o determinante da nova matriz fica multiplicado por k.

Exemplo:
$$\begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix} = 2$$
 $\begin{vmatrix} 5.2 & 5.4 \\ 1 & 3 \end{vmatrix} = 5.2 = 10$

Consequências:

 No cálculo dos determinantes, é possível colocar o fator comum em evidência.

$$\begin{vmatrix} 18 & 6 & 12 \\ 1 & 5 & 0 \\ 3 & 4 & -1 \end{vmatrix} = \begin{vmatrix} 3.6 & 3.2 & 3.4 \\ 1 & 5 & 0 \\ 3 & 4 & -1 \end{vmatrix} = 3. \underbrace{\begin{vmatrix} 6 & 2 & 4 \\ 1 & 5 & 0 \\ 3 & 4 & -1 \end{vmatrix}}_{(-72)} = 3.(-72) = -216$$

 Se multiplicarmos uma matriz quadrada de ordem n por um número k o determinante fica multiplicado pelo número kⁿ.

4) O determinante de uma matriz triangular é o produto dos elementos da diagonal principal.

Exemplo:
$$\begin{vmatrix} 3 & 9 & 8 \\ 0 & 4 & 5 \\ 0 & 0 & 1 \end{vmatrix} = 3.4.1 = 12$$

5) Se A e B são duas matrizes de ordem n, o determinante do produto de A por B é o produto do determinante da matriz A pelo determinante da matriz B, ou seja:

Exemplo:

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} e A.B = \begin{bmatrix} 7 & 10 \\ 13 & 20 \end{bmatrix}$$

$$\underbrace{\det(A.B)}_{10} = \underbrace{\det_5}_{5} \underbrace{\det_2}_{2}$$

CUIDADO:
$$det(A \pm B) \neq det(A) \pm det(B)$$

6) Soma de determinantes

Sejam A, B e C três matrizes quadradas de ordem **n**. Considere que:

- Apenas uma das filas das três matrizes são diferentes, sendo as demais iguais.
- Se essa fila diferente da matriz C for igual à soma das filas correspondentes de A e B, temos:

Exemplo:

$$A = \begin{bmatrix} 2 & 0 & 5 \\ 1 & 3 & 3 \\ 2 & 1 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 0 & 5 \\ 4 & 3 & 3 \\ 5 & 1 & 4 \end{bmatrix}$$

$$C = \begin{bmatrix} 5 & 0 & 5 \\ 5 & 3 & 3 \\ 7 & 1 & 4 \end{bmatrix}$$

Observe que: det C = det A + det B

7) Casos onde o determinante não se altera

• O determinante de uma matriz não se altera quando trocamos de forma ordenada e simultânea as linhas pelas colunas, ou seja:

 Se somarmos a uma fila de A uma outra fila previamente multiplicada por um número real, obtemos uma matriz A', tal que det A' = det A (Teorema de Jacobi)

Exemplo:
$$A = \begin{bmatrix} -4 & -1 & 2 \\ 1 & 3 & 2 \\ 2 & 2 & -1 \end{bmatrix} \Rightarrow \det A = 15$$

Multiplicando a terceira linha por 2 e adicionando à

primeira, obtemos A': A' =
$$\begin{bmatrix} 0 & 3 & 0 \\ 1 & 3 & 2 \\ 2 & 2 & -1 \end{bmatrix} \Rightarrow \det A = 15$$

Exercícios Resolvidos

1) Justifique em cada caso o motivo do determinante ser nulo.

a)
$$\begin{vmatrix} -4 & 5 & 1 \\ -8 & 10 & 2 \\ 4 & 3 & 7 \end{vmatrix} = 0$$
 b) $\begin{vmatrix} -7 & 12 & 0 \\ 5 & 1 & 0 \\ 4 & 13 & 0 \end{vmatrix} = 0$ c) $\begin{vmatrix} 1 & 3 & 4 \\ 2 & 0 & 2 \\ -1 & 4 & 3 \end{vmatrix} = 0$

Solução:.

Identificando as propriedades dos determinantes que se anulam, vem:

- a) O determinante é nulo, pois a 2ª linha é dobro da 1ª linha
- b) O determinante é nulo, pois a 3ª coluna inteira é formada por zeros.
- c) A 3ª coluna é a soma da 1ª coluna com a 2ª coluna.

2) Se
$$\det \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix} = -1$$
, calcule o valor do $\det \begin{bmatrix} -2a & -2b & -2c \\ 2p+x & 2q+y & 2r+z \\ 3x & 3y & 3z \end{bmatrix}$

Solução:

Um determinante não se altera se uma linha for substituída pela soma de seus elementos com outra previamente multiplicada por um número (Teorema de Jacobi). O determinante fica multiplicado pelo número que for multiplicado a uma linha ou coluna. Observando o segundo determinante, temos:

- a) A 1ª linha foi multiplicada por (- 2).
- b) A 2ª linha foi multiplicada por (2).
- c) A 2ª linha foi substituída por: Linha 2 + Linha 3. (não interfere no determinante)
- d) A 3º linha foi multiplicada por (3).

Conclusão. O determinante da matriz é o produto do determinante original por (-2).(2).(3) resultando no valor: (-1).(-2).(2).(3) = 12.

3) Analise as afirmações abaixo, sabendo que:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -2$$

$$\begin{array}{c|cccc} d & e & f \\ a & b & c \\ g & h & i \end{array} = 2$$

II.
$$\begin{vmatrix} 3a & 3b & 3c \\ 3d & 3e & 3f \\ 3g & 3h & 3i \end{vmatrix} = -6$$

III.
$$\begin{vmatrix} a & b & c \\ 0 & 0 & 0 \\ g & h & i \end{vmatrix} = 0$$

IV.
$$\begin{vmatrix} 2a & 2b & 2c \\ 2d & 2e & 2f \\ 2g & 2h & 2i \end{vmatrix} = -16$$

Assinale a alternativa correta.

- a) Apenas I, III e IV são verdadeiras.
- b) Apenas a afirmação III é verdadeira.
- c) Apenas I e II são verdadeiras.
- d) Todas as afirmações são verdadeiras.

Resposta:

[A]

- I. Verdadeira. Ao permutarmos duas filas paralelas de uma matriz quadrada $\,A,\,$ obtemos uma matriz $\,B,\,$ tal que $\,det\,B=-det\,A.$
- II. Falsa. Como:

$$\begin{pmatrix} 3a & 3b & 3c \\ 3d & 3e & 3f \\ 3g & 3h & 3i \end{pmatrix} = 3 \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix},$$

vem

$$\begin{vmatrix} 3a & 3b & 3c \\ 3d & 3e & 3f \\ 3g & 3h & 3i \end{vmatrix} = 3^3 \cdot \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 27 \cdot (-2) = -54 \neq -6.$$

- III. Verdadeira. Se uma matriz quadrada apresenta uma fila de zeros, então seu determinante é nulo.
- IV. Verdadeira.

$$\begin{vmatrix} 2a & 2b & 2c \\ 2d & 2e & 2f \\ 2g & 2h & 2i \end{vmatrix} = 2^3 \cdot \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 8 \cdot (-2) = -16.$$

Exercícios

01) (PUC – RS) Sendo A =
$$\begin{bmatrix} a & b & c \\ 1 & 2 & 3 \\ m & t & k \end{bmatrix}$$
, B = $\begin{bmatrix} m & t & k \\ 1 & 2 & 3 \\ a & b & c \end{bmatrix}$ e det

A = 4, o determinante de B é igual a:

a)
$$-\frac{1}{4}$$

- b) $\frac{1}{4}$
- c) $\frac{3}{4}$
- d) 4
- e) 4

02) Sabe-se que
$$\begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix} = 2$$
. Determine o valor de
$$\begin{vmatrix} 2a & -3d & 4g \\ 2b & -3e & 4h \\ 2c & -3f & 4i \end{vmatrix}$$

- **03)** Sabe-se que M é uma matriz quadrada de ordem 3 e que det(M) = 5. Então det (2M) é igual a:
 - a) 20
 - b) 10
 - c) 18
 - d) 40
 - e) 27
- **04)** (UFSC SC) Sendo A uma matriz dada por:

$$A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 5 & 8 & 0 & 0 \\ -1 & -3 & 7 & 0 \\ 4 & 4 & 2 & 2 \end{pmatrix}, \text{ calcule det (A)}$$

05) Sabe-se que
$$\begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix} = 10$$
. Determine o valor de
$$\begin{vmatrix} 2a & d & 3g \\ 2b & e & 3h \\ 2c & f & 3i \end{vmatrix}$$

06) Considere a matriz
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 4 & 2 \\ 0 & 2 & 2 \end{pmatrix}$$
. Calcule:

- a) det A
- b) det 2A
- c) det A²
- **07)** Calcule o determinante da matriz $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 4 & 0 \\ 5 & 3 & 9 & 2 \end{pmatrix}$

08) Sabendo que
$$\begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix} = 2$$
, calcule $\begin{vmatrix} 2a & 3d & -g \\ 2b & 3e & -h \\ 2c & 3f & -i \end{vmatrix}$

09) Considere as matrizes A = $\begin{pmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 5 & \sqrt{2} & 3 \end{pmatrix} e$

$$B = \begin{pmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 2 & 3 & 4 \end{pmatrix}. Determine:$$

- a) det A
- b) det B
- c) det (A.B)
- d) det (4A)
- e) det (2B)
- 10) (IFSC SC) Após assistir a uma aula sobre determinantes de matrizes, Pedro decidiu codificar sua senha bancária. A senha é composta pelos números A, B, C e D, justapostos nessa ordem e codificados através dos determinantes abaixo:

$$A = \begin{vmatrix} 1 & 2 & 4 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} \qquad B = \begin{vmatrix} 1 & 7 & -1 & 25 \\ 0 & 3 & -8 & 32 \\ 0 & 0 & 2 & 11 \\ 0 & 0 & 0 & 1 \end{vmatrix} \qquad C = \begin{vmatrix} 1 & 2 & 0 & -2 \\ 2 & 4 & -3 & -3 \\ 4 & 8 & -2 & -1 \\ 8 & 16 & 0 & -2 \end{vmatrix}$$

$$D = \begin{vmatrix} -3 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

Sobre a senha de Pedro, assinale no cartão-resposta o número correspondente à proposição correta ou à soma das proposições corretas.

- 01. A senha possui dois dígitos nulos.
- 02. A senha possui seis dígitos.
- 04. O último dígito da senha é zero.
- 08. Os dígitos da senha estão em ordem crescente.
- 16. A + B + C + D = 45.
- 32. Os dois primeiros dígitos da senha são 1 e 5.

11) (IME) Seja A =
$$\begin{bmatrix} 1 & a & -2 \\ a-2 & 1 & 1 \\ 2 & -3 & 1 \end{bmatrix} com \ a \in \mathbb{R}. \ Sabe-se$$

que $det(A^2 - 2A + I) = 16$. A soma dos valores de a que satisfazem essa condição é:

Obs.: det(X) denota o determinante da matriz X

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4
- 12) (ITA SP) Considere $A \in M_{5x5}(\mathbb{R})$ com $\det(A) = \sqrt{6} \ e \ \alpha \in R \setminus \{0\}$. Se $\det(\alpha A^t A A^t) = \sqrt{6}\alpha^2$, o valor de α é
- a) $\frac{1}{6}$
- b) $\frac{\sqrt{6}}{6}$
- c) $\frac{\sqrt[3]{36}}{6}$
- d) 1.
- e) √216.

GABARITO – AULA 04 – DETERMINANTES – PARTE II

1) e 2) - 48 3) d 4) 70 5) 60 6) a) 4 b) 32 c) 16 7) 08 8) - 12 9) a) 6 b) 15 c) 90 d) 384 e) 120

10) 50 **11)** d **12)**

INVERSÃO DE MATRIZES

1. Definição

Considere A e B duas matrizes quadradas de ordem $\bf n$. Se A.B = B.A = $\bf I_n$, dizemos que B é a matriz inversa de A e indicaremos por $\bf A^{-1}$

$$\mathbf{A.A}^{-1} = \mathbf{A}^{-1}.\mathbf{A} = \mathbf{I}_{\mathbf{n}}$$

OBSERVAÇÕES:

- Uma matriz só possui inversa se o seu determinante for diferente de zero, sendo assim, a matriz é chamada de inversível.
- Se o determinante da matriz for igual a zero, a matriz não admite inversa, sendo assim, chamada de singular.
- Se a matriz A é inversível então ela é quadrada.
- Se a matriz A é inversível, então a sua inversa é única.

Exercício Resolvido

Para quais valores de \mathbf{x} a matriz $\mathbf{A} = \begin{pmatrix} x & x-1 & 1 \\ x+1 & -1 & 0 \\ 1 & 2 & -1 \end{pmatrix}$

é ínversível?

Solução:

Uma matriz é inversível quando seu determinante é não nulo. Então, vamos calcular detA.

$$\begin{vmatrix} x & x-1 & 1 \\ x+1 & -1 & 0 \\ 1 & 2 & -1 \end{vmatrix} =$$

$$x + 2(x + 1) + 1 + (x + 1).(x - 1) =$$

$$x + 2x + 2 + 1 + x^2 - x + x - 1 =$$

$$x^{2} + 3x + 2$$

Impondo a condição $\det A \neq 0$, obtemos $x^2 + 3x + 2 \neq 0 \implies x \neq -1$ e $x \neq -2$.

Então, a matriz A só admite inversa se $x \neq -1$ e $x \neq -2$.

2. Obtenção da Matriz Inversa

Vamos através de um exercício resolvido mostrar como se obtém a inversa de uma matriz de ordem 2.

Exercício Resolvido

A inversa da matriz $A = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$ é a matriz $A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Impondo que: $\mathbf{A.A}^{-1} = \mathbf{I_n}$, vem:

$$\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 2a+c & 2b+d \\ 5a+3c & 5b+3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{cases} 2a+c=1 \\ 5a+3c=0 \end{cases} \qquad \begin{cases} 2b+d=0 \\ 5b+3d=1 \end{cases}$$

Resolvendo os sitemas, vem:

$$a = 3$$
, $b = -1$, $c = -5$, $d = 2$

Assim sendo:
$$A = \Rightarrow A^{-1} = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}$$

Observe que:
$$\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$$
. $\begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

OBSERVAÇÃO:

O processo para se obter a inversa de uma matriz por vezes pode se tornar trabalhoso, pois de um modo geral podemos recair na resolução de n sistemas de n equações e n incógnitas. Segue abaixo, um processo que simplifica esse cálculo.

Teorema

A matriz inversa A^{-1} de uma matriz A é dada por: $A^{-1} = \frac{1}{det A}.\overline{A} \quad com \ det \ A \neq 0$

A representa a matriz adjunta.

Matriz Adjunta é a matriz transposta da matriz dos cofatores de A.

Consequências:

• Sendo:
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} \frac{d}{\det A} & -\frac{b}{\det A} \\ -\frac{c}{\det A} & \frac{a}{\det A} \end{pmatrix}$$

 Cada elemento b_{ij} da matriz inversa de A, pode ser calculado aplicando a relação abaixo:

$$b_{ij} = \frac{1}{det A}.C_{ji}$$

onde C i é o cofator do elemento a i

3. Determinante da Matriz Inversa

Sendo: $A_n = B_n \rightarrow \det A = \det B$

Acompanhe, agora, o desenvolvimento abaixo:

$$A.A^{-1} = I_n$$

$$\det\left(A.A^{-1}\right) = \det\left(I_{n}\right)$$

Aplicando o teorema de Binet, vem:

$$det(A).det(A^{-1})=1$$

Então:

$$det A^{-1} = \frac{1}{det A}$$

4. Propriedades

Sendo A e B duas matrizes de ordem ${\bf n}$ inversíveis, valem as seguintes propriedades:

1)
$$\left(A^{-1}\right)^{-1} = A$$

2)
$$(A.B)^{-1} = B^{-1}.A^{-1}$$

$$3)\left(A^{-1}\right)^{t} = \left(A^{t}\right)^{-1}$$

CURIOSIDADE!

MATRIZ INVERSA – SISTEMAS LINEARES

Podemos resolver sistemas lineares usando o conceito de matriz inversa.

Acompanhe o exemplo abaixo:

Resolver o sistema
$$\begin{cases} 3x + 2y = 8 \\ 4x + 3x = 11 \end{cases}$$
.

Solução:

Podemos associar o sistema acima a equação matricial: A.M = B, sendo

$$A = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}, M = \begin{pmatrix} x \\ y \end{pmatrix} e B = \begin{pmatrix} 8 \\ 11 \end{pmatrix}$$

Devemos obter a matriz M, que neste caso, nos dá a solução para o sistema.

Isolando a matriz M na equação abaixo, temos:

$$A.M = B$$

$$A^{-1}.A.M = A^{-1}.B$$

$$\therefore M = A^{-1}.B$$

A inversa da matriz
$$A = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \acute{e} A^{-1} = \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$

Temos então que:

$$M = A^{-1}.B$$

$$M = \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 11 \end{pmatrix}$$

$$M = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Portanto, a solução do sistema é $S = \{(2,1)\}$

Exercícios

- **01)** Determine a inversa da matriz $A = \begin{pmatrix} 1 & 5 \\ 2 & 0 \end{pmatrix}$
- 02) Assinale V para as verdadeiras e F para as Falsas:
 - a) () (UFSC SC) Sendo $A = \begin{pmatrix} 2 & I \\ 5 & 3 \end{pmatrix}$ e $B = \begin{pmatrix} I & 3 \\ 5 & 9 \end{pmatrix}$,

então o produto entre a matriz inversa de A e a matriz transposta de B é a matriz

matriz transposta de B e a matriz. b) () (UFSC – SC) Dadas as matrizes $A = \begin{bmatrix} -1 & 2 \\ 2 & 0 \\ -2 & -1 \end{bmatrix}$ e

 $B = \begin{bmatrix} 1 & 5 & 0 \\ -3 & 0 & 1 \end{bmatrix} \text{ , então a matriz D = A.B não}$ admite inversa.

03) Dada a matriz $A = \begin{pmatrix} -1 & -4 & 3 \\ -2 & 1 & -1 \\ 8 & 0 & -2 \end{pmatrix}$. Determine o

determinante da matriz inversa de A

- **04)** A matriz $\begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix}$, na qual x é um número real, é inversível se, e somente se:
 - a) x = 0
 - b) x = 1
 - c) x = -1
 - d) $x \neq \pm 1$
 - e) x ≠ 2
- **05)** Determine a inversa da matriz $A = \begin{pmatrix} 4 & 7 \\ 1 & 3 \end{pmatrix}$
- **06)** A matriz $A = \begin{pmatrix} 1 & 1 & 6 \\ 4 & 2 & 1 \\ 5 & 3 & 7 \end{pmatrix}$ admite inversa?
- **07)** Calcule o determinante da inversa da matriz $\begin{pmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 2 & 3 & 4 \end{pmatrix}.$

- **08)** A inversa da matriz A = $\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ é:
 - a) $\begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$
 - b) $\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$
 - $c)\begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$
 - $d)\begin{pmatrix} -2 & 0 \\ 5 & -3 \end{pmatrix}$
 - $e)\begin{pmatrix} -3 & 1 \\ 5 & -2 \end{pmatrix}$
- **09)** O maior elemento da inversa da matriz $A = \begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix}$ é:
 - a) 2
 - b) 5/6
 - c) 1/5
 - d) 1/6
 - e) 1/3
- 10) Calcule o determinante da inversa da matriz
- $\begin{pmatrix}
 1 & 1 & 2 & -4 \\
 0 & 2 & 3 & 6 \\
 0 & 0 & 5 & 9
 \end{pmatrix}$
- 11) (UFSC SC) Assinale a(s) proposição (ões) CORRETA(S).
 - 01. Se K = (k_{ij}) é uma matriz quadrada de ordem 2 dada por k_{ij} = 2^{2i+j} para i < j e k_{ij} = i² + 1 para i ≥ j, então K é uma matriz inversível.
 - 02. Se A e B são matrizes tais que A.B é a matriz nula, então A é a matriz nula ou B é a matriz nula.
 - 04. Sejam as matrizes M e P, respectivamente, de ordens 5 x 7 e 7 x 5. Se R = M.P, então a matriz R² tem 625 elementos.
 - 08. Chamamos "traço de L" e anotamos tr(L) a soma dos elementos da diagonal principal de uma matriz quadrada L; então $tr(L) = tr(L^t)$.
- **12)** (UEL PR) Se A é uma matriz quadrada 2x2 de determinante 10. Se B = 2.A e C = 3. B⁻¹, onde B⁻¹ é a matriz inversa de B, então o determinante de C é:
 - a) -60
 - b) $-\frac{3}{20}$
 - c) $-\frac{20}{3}$
 - d) $\frac{9}{40}$
 - e) $\frac{40}{9}$

13) (UFPR – PR) Dados os números reais a, b e c diferentes de zero e a matriz quadrada de ordem 2 $M = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ considere as seguintes afirmativas a

respeito de M:

- 1. A matriz M é invertível.
- 2. Denotando a matriz transposta de M por M^T, teremos $det(M.M^T) > 0$.
- 3. Quando a = 1 e c = -1, tem-se $M^2 = I$, sendo I a matriz identidade de ordem 2.

Assinale a alternativa correta.

- a) Somente a afirmativa 2 é verdadeira.
- b) Somente a afirmativa 3 é verdadeira.
- c) Somente as afirmativas 1 e 2 são verdadeiras.
- d) Somente as afirmativas 2 e 3 são verdadeiras.
- e) As afirmativas 1, 2 e 3 são verdadeiras.
- 14) (UEPG PR) Sobre matrizes e determinantes, assinale o que for correto.
 - 01) Seja P uma matriz quadrada. Se det(P) = 3 e det(2P) = 96, então P é uma matriz quadrada de ordem 6.
 - 02) Considere as matrizes $A(a_{ij})_{4\times4}$, com $a_{ij}=3i-j$ e $B = (b_{ij})_{4\times4}$, com $b_{ij} = i + 2j$. O elemento da quarta linha e da terceira coluna da matriz 3A - 2B vale 7.

04) Se
$$M = \begin{pmatrix} \sqrt{3} & -2 & -1 \\ 0 & 1 & 2 \\ 2 & \sqrt{3} & \sqrt{3} \end{pmatrix}$$
, então o determinante da

matriz inversa de M vale 9.

- 08) Seja qual for o valor de k, k real, o determinante da matriz $\begin{pmatrix} 2k & -1 \\ 3 & k \end{pmatrix}$ nunca se anula.
- 16) A matriz A é do tipo 6×8 , a matriz B é do tipo $m \times 5$ e a matriz C é do tipo $n \times 3$. Se existe o produto $(A \cdot B) \cdot C$, então m = 5 e n = 8.

GABARITO - AULA 05 - MATRIZ INVERSA

1)
$$\begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{5} & -\frac{1}{10} \end{pmatrix}$$

5)
$$A^{-1} = \begin{pmatrix} \frac{3}{5} & -\frac{7}{5} \\ -\frac{1}{5} & \frac{4}{5} \end{pmatrix}$$

6) Não, pois det A

12) d

7) 1/15 **8)** a

10) 1/30

11) 09

AULA 06

SISTEMAS LINEARES – RESOLUÇÃO I

1) Equação Linear

Equação Linear é toda equação da forma:

$$a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n = b$$

onde:

- a₁, a₂, a₃, ...,a_n são números reais que recebem o nome de coeficientes das incógnitas x1, x2, x3 ..., xn.
- **b** é o termo independente.

Observações:

- Costuma-se por conveniência indicar as incógnitas x₁, x₂, x₃,...respectivamente por x, y, z,...
- Se b = 0, dizemos que a equação é linear homogênea.

Exemplos

- 1) 2x + 3y z = 5 é uma equação linear
- 2) 6x + 2y z + t w = 0 é uma equação linear (homogênea)
- 3) $x^2 2y + z = 7$ não é uma equação linear, pois numa equação linear, os expoentes de todas as incógnitas devem ser unitários.
- 4) 5x 2yz + w = 0 não é uma equação linear, pois apresenta um termo misto (yz).

Solução de Uma Equação Linear

solução uma equação $a_1X_1 + a_2X_2 + a_3X_3 + ... + a_nX_n = b$ é uma sequência ou n-upla ordenada de números reais $(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n)$ que tornam $\alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 + ... + \alpha_n X_n = b$ uma sentença verdadeira.

Exemplos:

- O par (2, 1) é uma das soluções para a equação 3x - y = 5, pois 3.2 - 1 = 5
- A terna (0, 4, 1) é uma das soluções para a equação x + 2y + 3z = 11, pois 0 + 2.4 + 3.1 = 11
- O par (2, 4) não é solução para a equação 2x + y = 0, pois $2.2 + 4 \neq 0$
- O par (0, 0) é uma das soluções para a equação 2x + 4y = 0, pois 2.0 + 4.0 = 0

IMPORTANTE!

- Equação do tipo $0x_1 + 0x_2 + 0x_3 +0x_n = 0$ admite qualquer ênupla como solução.
- Equação do tipo $0x_1 + 0x_2 + 0x_3 +0x_n = k$, com $k \neq 0$, não admite nenhuma solução.

2) Sistemas Lineares

Chama-se sistema linear de **m** equações e **n** incógnitas $X_1, X_2, X_3, ..., X_n$ ao conjunto de equações lineares

$$\begin{cases} a_{11}X_1 + a_{12}X_2 + a_{13}X_3 + \dots + a_{1n}X_n & = b_1 \\ a_{21}X_1 + a_{22}X_2 + a_{23}X_3 + \dots + a_{2n}X_n & = b_2 \\ a_{31}X_1 + a_{32}X_2 + a_{33}X_3 + \dots + a_{3n}X_n & = b_3 \\ \vdots & \vdots & \vdots \\ a_{m1}X_1 + a_{m2}X_2 + a_{m3}X_3 + \dots + a_{mn}X_n & = b_m \end{cases}$$

Obs.: 1: Um sistema linear é chamado de *Homogêneo* quando todos os termos independentes $b_1, b_2, b_3, ..., b_m$ forem nulos.

Obs.: 2: Note que podemos reescrever um sistema linear na forma de produto de matrizes, ao que chamamos de *Forma Matricial* do sistema:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \bullet \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{pmatrix}.$$

Exemplos

1)
$$\begin{cases} x + y + z & = 100 \\ 3x + 5y + 9z & = 600 & \text{é um sistema linear} \\ 10x + 20y + 50z & = 2.800 \end{cases}$$

de 3 equações e 3 incógnitas.

A Forma Matricial deste sistema é

$$\begin{pmatrix} 1 & 1 & 1 \\ 3 & 5 & 9 \\ 10 & 20 & 50 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 100 \\ 600 \\ 2.800 \end{pmatrix}$$

$$\begin{cases} x-y+2z-w = 0 \\ x+y+4w = 0 \end{cases}$$
 é um sistema linear

homogêneo de 2 equações e 4 incógnitas. A sua Forma Matricial é

$$\begin{pmatrix} 1 & -1 & 2 & -1 \\ 1 & 1 & 0 & 4 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Solução de um Sistema Linear

A solução de uma sistema linear é uma sequência ou n-upla ordenada de números reais $(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n)$ que satisfaz *simultaneamente* a todas as equações do sistema.

Exemplo

Considere o sistema
$$\begin{cases} x+y+z &= 8 \\ -x-y+z &= 0 \text{ . Note que a} \\ 2x+5y-z &= 13 \end{cases}$$

tripla ordenada (x,y,z) = (6,1,1) satisfaz a primeira equação, mas não satisfaz nem a segunda nem a terceira. Logo, (6,1,1) não é solução do sistema.

Observe também que a tripla (2,2,4) satisfaz a primeira e a segunda equação, mas não satisfaz a terceira, portanto também não é solução.

Já a tripla ordenada (1,3,4) satisfaz as 3 equações e, por isso, é solução do sistema.

Uma solução evidente para o sistema homogêneo $\begin{cases} x+y-z=0\\ 2x-y+z=0 & \text{\'e a terna } (0,0,0). \text{ Esta solução \'e chamada}\\ 3x+7y-z=0 \end{cases}$

solução trivial.

Classificação de um Sistema Linear

Um Sistema Linear pode ser classificado de acordo com o número de soluções que ele apresenta. Sendo assim ele pode ser:

DETERMINADO (1 solução)

POSSÍVEL

INDETERMINADO (infinitas soluções)

• IMPOSSÍVEL Não Admite Solução

Exemplos:

- O sistema $\begin{cases} x + y = 5 \\ 2x y = 4 \end{cases}$ é possível e determinado pois admite solução única que é o par ordenado (3, 2).
- O sistema $\begin{cases} x + y = 5 \\ 2x + 2y = 10 \end{cases}$ é possível e indeterminado pois admite infinitas soluções como os pares ordenados (3, 2); (2, 3); (1, 4); (k, 5 k).
- O sistema $\begin{cases} x+y=5\\ x+y=6 \end{cases}$ é impossível, pois não existem número que simultaneamente somados dão 5 e 7.

3) Regra de Cramer

A Regra de Cramer consiste num método para se resolver sistemas Lineares de **n** equações e **n** incógnitas. Seja o sistema

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Para obtermos a solução para esse sistema vamos fazer alguns cálculos. Acompanhe:

det S

Determinante associado a matriz formada pelos coeficientes das incógnitas.

$$\mathbf{det S} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

det X_i

Determinante associado a matriz obtida a partir de S, trocando a coluna dos coeficientes de X_i , pela coluna dos termos independentes do sistema.

$$\mathbf{det} \, \mathbf{X_1} = \begin{bmatrix} b_1 & a_{12} & \cdots & a_{1n} \\ b_2 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ b_n & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$\det X_{2} = \begin{vmatrix} a_{11} & b_{2} & \cdots & a_{1n} \\ a_{21} & b_{2} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & b_{n} & \cdots & a_{nn} \end{vmatrix}$$

:

$$\mathbf{det} \, \mathbf{X_n} = \begin{vmatrix} a_{11} & a_{12} & \cdots & b_1 \\ a_{21} & a_{22} & \cdots & b_2 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & b_n \end{vmatrix}$$

A solução do Sistema é dada por:

$$x_1 = \frac{\det X_1}{\det S}$$
 $x_2 = \frac{\det X_2}{\det S} \cdot \cdot \cdot \cdot \cdot x_n = \frac{\det X_n}{\det S}$

Veja que só é possível aplicar a Regra de Cramer em sistemas $\mathbf{n} \times \mathbf{n}$ em que det $\mathbf{S} \neq \mathbf{0}$. Esses sistemas são denominados **normais.**

Exercícios Resolvidos

1) Resolver o sistema
$$\begin{cases} x + 2y - z = 2 \\ 2x - y + 3z = 9 \\ 3x + 3y - 2z = 3 \end{cases}$$

Solução

$$\det S = \begin{vmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ 3 & 3 & -2 \end{vmatrix} = 10 \quad \det X = \begin{vmatrix} 2 & 2 & -1 \\ 9 & -1 & 3 \\ 3 & 3 & -2 \end{vmatrix} = 10$$

$$\det Y = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 9 & 3 \\ 3 & 3 & -2 \end{vmatrix} = 20 \quad \det Z = \begin{vmatrix} 1 & 2 & 2 \\ 2 & -1 & 9 \\ 3 & 3 & 3 \end{vmatrix} = 30$$

Aplicando a regra de Cramer, temos:

$$x = \frac{\det X}{\det S}$$
 $y = \frac{\det Y}{\det S}$ $z = \frac{\det Z}{\det S}$
 $x = \frac{10}{10} = 1$ $y = \frac{20}{10} = 2$ $z = \frac{30}{10} = 3$
 $S = \{(1, 2, 3)\}$

Exercícios

01) (PUC - RS) O sistema
$$\begin{cases} 2x-y=3\\ -x+2y=4 \end{cases}$$
 pode ser

apresentado como

a)
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

b)
$$\begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

c)
$$\begin{bmatrix} -1 & 2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

d)
$$\begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

e)
$$\begin{bmatrix} -2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

02) (IFAL – AL) Resolva o sistema de equações abaixo para x e y Reais e determine o valor do produto xy.

$$\begin{cases} x + y = 14 \\ 4x + 2y = 38 \end{cases}$$

a) 5. b) 9. c) 25. d) 45. e) 81.

03) Resolva os sistemas lineares abaixo:

a)
$$\begin{cases} x + y + z &= 7 \\ 2x + y - 3z &= 8 \end{cases}$$

$$\left(-x + 2y + 3z = 0\right)$$

$$\begin{cases} x + y - 2z = -3 \\ -y + z = 1 \end{cases}$$

$$2x-y+z=3$$

$$\begin{cases} x + 2y - z = 3 \end{cases}$$

c)
$$\begin{cases} 2x + 3y + z = 9 \end{cases}$$

$$\begin{cases} 3x - y - 2z &= -10 \end{cases}$$

04) (IFAL – AL) Sabendo que Tales e Platão têm juntos massa de 159 kg; Platão e Fermat, 147 kg; e Tales e Fermat, 134 kg, determine a massa de Tales, Platão e Fermat juntos:

- a) 200.
- b) 210.
- c) 220.
- d) 230.
- e) 240.

05) (IFSUL – RS) Na eleição do grêmio estudantil do IFSUL houve três candidatos à presidência: Maria, Renato e Pedro. O presidente é eleito pelos alunos através de voto secreto; cada aluno pode votar em apenas um dos candidatos, e todos os alunos do IFSUL votaram. Após a apuração dos votos, verificou-se que Maria e Renato juntos tiveram 2.230 votos, Maria e Pedro alcançaram 1.702 votos, e Renato e Pedro 1.940 votos.

Considerando os dados fornecidos, o número de votos do presidente eleito foi

- a) 996
- b) 1524
- c) 1234
- d) 1326

06) (UFSM – RS) Um feirante comprou, por R\$ 3.725,00, 3 toneladas distribuídas entre arroz, feijão e batata, num total de 76 sacas. O peso e o preço de cada saca desses produtos estão mostrados a seguir.

	ВАТАТА	FEIJÃO	ARROZ
Peso por saca	20 kg	50 kg	60 kg
Preço por saca	R\$ 25,00	R\$ 100,00	R\$ 50,00

Sobre essa compra, é possível afirmar:

Está(ão) correta(s)

- I. O feirante comprou exatamente 30 sacas de batata.
- II. A quantidade de sacas de arroz é o dobro da quantidade de sacas de feijão.
- III. A quantidade de sacas de arroz é menor que a quantidade de sacas de batata.
- a) apenas I.
- b) apenas II.
- c) apenas III.
- d) apenas I e II.
- e) apenas II e III.
- 07) (UDESC SC) Um Pet Shop tem cães, gatos e passarinhos à venda, totalizando 38 cabeças e 112 patas. Sabe-se que nenhum destes animais apresenta algum tipo de deficiência física e que a metade do número de passarinhos mais o número de cães supera em duas unidades o número de gatos. Se o preço de venda de cada cão, gato e passarinho é, respectivamente, 500, 90 e 55 reais, então, ao vender todos estes animais, o Pet Shop terá arrecadado:
 - a) 4770 reais
 - b) 3950 reais
 - c) 6515 reais
 - d) 5250 reais
 - e) 5730 reais

GABARITO - AULA 06

1)a 2)d 3)* 4)c 5)c 6)c 7)a

Gabarito: 3) a) $S = \{(5,1,1)\}$ b) $S = \{(1,2,3)\}$ c) $S = \{(-1,3,2)\}$

SISTEMAS LINEARES – RESOLUÇÃO II

1) Sistema Linear Escalonado

Um sistema linear é dito escalonado se em cada equação, houver pelo menos um coeficiente não nulo e o número de coeficientes iniciais não nulos aumenta de equação para equação.

Exemplos:

$$1)\begin{cases} 5x + y = 3 \\ 4y = 8 \end{cases}$$

$$2x + 6y + 3z = 7$$

$$2y + 5z = 1$$

$$8z = 1$$

3)
$$\begin{cases} 2x + 7y + 8z + 9t = -1 \\ 3z + 8t = 2 \\ -t = 8 \end{cases}$$

Resolução de um Sistema Linear Escalonado

Observe o sistema abaixo:

$$\begin{cases} x + 2y + 4z = 17 \\ 3y + z = 9 \\ 4z = 12 \end{cases}$$

Perceba que o sistema está na forma escalonada. Sua resolução, neste caso, é feita de forma imediata por substituições, acompanhe:

$$\begin{cases} x + 2y + 4z = 17 & \text{(I)} \\ 3y + z = 9 & \text{(II)} \end{cases}$$
$$4z = 12 & \text{(III)}$$

Da equação (III), temos z = 3. Substituindo z = 3 na equação (II), vem:

$$3y + 3 = 9 \rightarrow y = 2$$

Substituindo y = 2 e z = 3 na equação (I), vem:

$$x + 2.2 + 4.3 = 17 \rightarrow x = 1.$$

Logo, a solução do sistema é o terno (1, 2, 3)

$$\therefore$$
 S = {(1, 2, 3)}

Observe que o sistema acima é Possível e Determinado.

Acompanhe agora, a resolução do sistema $\begin{cases} x+y+z=4 \\ y+z=2 \end{cases}$

Perceba também, que o sistema está na forma escalonada. Sua resolução é feita fazendo as devidas substituições, acompanhe:

$$\begin{cases} x + y + z = 4(I) \\ y + 3z = 2(II) \end{cases}$$

Fazendo em (II) y = 2 – 3z e substituindo em (I), temos: $x + 2 - 3z + z = 4 \rightarrow x = 2 + 2z$.

Logo: x = 2 + 2z e y = 2 - 3z.

Dizemos, neste caso, que z é a variável livre do sistema. Atribuindo a z um valor **k** real arbitrário , temos:

$$x = 2 + 2k e y = 2 - 3k$$
.

Assim, o conjunto solução do sistema é:

$$S = \{(2 + 2k, 2 - 3k, k), \forall k, k \in \Re\}$$

Se desejarmos obter algumas das infinitas soluções desse sistema, basta atribuirmos a **k** valores reais, por exemplo:

Para k = 1, temos como solução a terna (4, -1, 1); Para k = 2, temos como solução a terna (6, -4, 2).

Observe que o sistema acima é Possível e Indeterminado.

OBSERVAÇÃO: O Grau de indeterminação de um sistema linear indeterminado indica o número de variáveis livres. Esse número pode ser obtido pela diferença n – m, onde n indica a quantidade de equações e m a quantidade de incógnitas do sistema linear na forma escalonada.

2) Sistemas Equivalentes-Escalonamento

Sistemas Equivalentes

Dois Sistemas são ditos equivalentes se e somente se:

- São Possíveis e admitem as mesmas soluções, ou
- São Impossíveis.

Exemplo:
$$S_1$$
:
$$\begin{cases} x + y = 5 \\ 2x - y = 4 \end{cases} S_2$$
:
$$\begin{cases} 4x + y = 14 \\ 3x + 2y = 13 \end{cases}$$

 S_1 e S_2 são equivalentes, pois ambos são determinados e admitem como solução o mesmo par ordenado (3, 2).

Sabendo que sistemas equivalentes possuem a mesma solução, podemos transformar um sistema linear qualquer em um outro sistema equivalente, no entanto, na forma

escalonada, com o intuito de obtermos sua solução de maneira mais conveniente. Esse processo é chamado escalonamento e sua aplicação baseia-se em algumas tranformações elementares.

Transformações Elementares

Vamos obter sistemas equivalentes ao sistema $\begin{cases} x+y=5\\ 2x-y=4 \end{cases}$ através de três transformações elementares.

a) Transformação 1: Trocar de posição duas equações.

$$S_1: \begin{cases} x + y = 5 \\ 2x - y = 4 \end{cases}$$
 e $S_2: \begin{cases} 2x - y = 4 \\ x + y = 5 \end{cases}$

Observe que S₁ e S₂ são equivalentes.

 b) Multiplicar uma equação por um número real k diferente de zero.

$$S_1: \begin{cases} x+y=5 \\ 2x-y=4 \end{cases} e S_2: \begin{cases} 2x+2y=10 \\ 2x-y=4 \end{cases}$$

 S_1 e S_2 são equivalentes. A equação 2x + 2y = 10 do sistema S_2 , foi obtida multiplicando por 2 os dois membros da equação x + y = 5 do primeiro sistema.

c) Adicionar a uma equação uma outra previamente multiplicada por um número real k.

S₁:
$$\begin{cases} x + y = 5 \\ 2x - y = 4 \end{cases}$$
 e S₂:
$$\begin{cases} x + y = 5 \\ 5x + 2y = 19 \end{cases}$$

 S_1 e S_2 são equivalentes. A equação 5x + 2y = 19 do sistema S_2 , foi obtida adicionando à segunda equação do sistema S_1 com o triplo da primeira equação.

Como vimos então, podemos transformar qualquer sistema linear em outro equivalente. Vamos utilizar essas tranformações afim de obtermos um sistema escalonado.

Roteiro para o escalonamento

Como já dissemos anteriormente (e isso é um importante teorema), dado um sistema S_1 , é sempre possível obter um sistema S_2 na forma escalonada, equivalente a S_1 . Para fazer isso utilizamos as transformações elementares, dentro do seguinte roteiro:

a) 1º etapa:

Colocar como $1^{\underline{a}}$ equação aquela em que o coeficiente da $1^{\underline{a}}$ incógnita não seja nulo.

b) 2º etapa:

Zerar o coeficiente da $1^{\underline{a}}$ incógnita em todas as equações que estejam abaixo da $1^{\underline{a}}$

c) 3º etapa:

Repetir as etapas 1^a e 2^a no sistema linear, agora a partir da 2^a equação; em seguida, repetir novamente as etapas 1^a e 2^a a partir da 3^a equação e assim por diante, até que o sistema fique escalonado.

Acompanhe o escalonamento do sistema abaixo:

Escalonar o sistema
$$\begin{cases} x + 2y - z & = & -1 \\ 3x + 4y + z & = & 15 \\ -2x + 8y - 2z & = & -6 \end{cases}$$

Vamos zerar os coeficientes de X na $2^{\underline{a}}$ e $3^{\underline{a}}$ equação. Inicialmente multiplicamos a $1^{\underline{a}}$ equação por -3 e somamos com a $2^{\underline{a}}$. O resultado ficará no lugar da $2^{\underline{a}}$ equação.

$$\begin{cases} x + 2y - z & = & -1 \\ 3x + 4y + z & = & 15 \\ -2x + 8y - 2z & = & -6 \end{cases} \longleftrightarrow \begin{cases} x + 2y - z & = & -1 \\ -2y + 4z & = & 18 \\ -2x + 8y - 2z & = & -6 \end{cases}$$

Agora multiplicamos a 1ª equação por 2 e somamos com a 3ª. O resultado ficará no lugar da 3ª equação.

$$\begin{cases} x + 2y - z &= -1 \\ -2y + 4z &= 18 \\ -2x + 8y - 2z &= -6 \end{cases} \longleftrightarrow \begin{cases} x + 2y - z &= -1 \\ -2y + 4z &= 18 \\ 12y - 4z &= -8 \end{cases}$$

Para que o sistema fique escalonado falta apenas zerar o coeficiente de y na $3^{\underline{a}}$ equação. Para isso, é fácil ver que basta multiplicar a $2^{\underline{a}}$ equação por 6 e somar com a $3^{\underline{a}}$.

$$\begin{cases} x + 2y - z &=& -1 \\ -2y + 4z &=& 18 \\ 12y - 4z &=& -8 \end{cases} \longleftrightarrow \begin{cases} x + 2y - z &=& -1 \\ -2y + 4z &=& 18 \\ 20z &=& 100 \end{cases}$$

Finalmente, o sistema está na forma escalonada. Note que é muito simples resolvê-lo agora, obtendo os valores das incógnitas de baixo para cima. Facilmente achamos z=5 Substituindo na z^a equação, calculamos y=1. Substituindo esses valores na z^a equação obtemos z=2 Logo, a solução para o sistema é a terna (2, 1, 5).

Classificação de um sistema linear usando escalonamento

Sejam \underline{S} um sistema linear qualquer e S' o sistema linear escalonado, obtido a partir de S.

- ➤ Se o número de equações for igual ao número de incógnitas, no sistema escalonado S', então o sistema original é possível e determinado (SPD);
- Se o número de equações for menor que número de incógnitas, no sistema escalonado', então o sistema original é possível e indeterminado (SPI);
- > Se durante o escalonamento surgir uma igualdade do tipo 0=b, onde b é um número não nulo, o sistema é impossível (SI)

Exercícios Resolvidos

1)
$$\begin{cases} 2x + 3y + 4z = 20 \\ x + y + z = 6 \\ -x + y + 2z = 7 \end{cases}$$

Resolução:

<u>Passo 1</u>: É conveniente trocar de posição as duas primeiras equações, afim de que o coeficiente da 1ª incógnita na 1ª equação seja 1.

$$\begin{cases} x + y + z = 6 \\ 2x + 3y + 4z = 20 \\ -x + y + 2z = 7 \end{cases}$$

<u>Passo 2</u>: Vamos repetir a primeira equação e eliminar a variável x da segunda e terceira equação. Acompanhe:

(Segunda Equação – 2.Primeira Equação)

$$\begin{cases} x + y + z = 6 \\ y + 2z = 8 \\ -x + y + 2z = 7 \end{cases}$$

(Terceira Equação + Primeira Equação)

$$\begin{cases} x + y + z = 6 \\ y + 2z = 8 \\ 2y + 3z = 13 \end{cases}$$

<u>Passo 3</u>: Repetir as duas primeiras equações e eliminar a variável y da 3ª equação. Acompanhe:

(Terceira Equação – 2. Segunda Equação)

$$\begin{cases} x + y + z = 6 \\ y + 2z = 8 \\ -z = -3 \end{cases}$$

Perceba que o sistema está na forma escalonada. Sua resolução, neste caso, é feita de forma imediata por substituições, acompanhe:

$$\begin{cases} x+y+z=6 \\ y+2z=8 \\ -z=-3 \end{cases} \Leftrightarrow \begin{cases} x+y+z=6 \\ y+2z=8 \\ z=3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x+y+z=6 \\ y+2.3=8 \Leftrightarrow \begin{cases} x+y+z=6 \\ y=2 \\ z=3 \end{cases} \end{cases} \Leftrightarrow \begin{cases} x+y+z=6 \\ y=2 \\ z=3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x+z+3=6 \\ y=2 \\ z=3 \end{cases} \Leftrightarrow \begin{cases} x=1 \\ y=2 \\ z=3 \end{cases}$$

Logo, a solução do sistema é o terno (1, 2, 3)

$$: S = \{(1, 2, 3)\}$$

Observe que o sistema acima é Possível e Determinado.

$$\begin{cases} x + y = 1 \\ 2x + y + z = 1 \\ y - z = 1 \end{cases}$$

Resolução:

<u>Passo 1</u>: Vamos repetir a primeira equação e eliminar a variável x da segunda equação. Acompanhe:

(Segunda Equação – 2.Primeira Equação)

$$\begin{cases} x + y = 1 \\ -y + z = -1 \\ y - z = 1 \end{cases}$$

<u>Passo 2</u>: Repetir as duas primeiras equações e eliminar a variável y da 3ª equação. Acompanhe:

(Terceira Equação + Segunda Equação)

$$\begin{cases} x + y = 1 \\ -y + z = -1 \\ 0x + 0y + 0z = 0 \end{cases}$$

Note que a equação $\underline{Ox + Oy + Oz = 0}$ é sempre verificada, podemos, então suprimi-la do sistema. O sistema possui, então, infinitas soluções. Podemos escrever uma solução geral para o sistema. Acompanhe:

$$\begin{cases} x + y = 1 & (I) \\ -y + z = -1 & (II) \end{cases}$$

De (II) vem: y = z + 1.

Substituindo y = z + 1 em (I), vem:

x = -z

Atribuindo a z um valor k real arbitrário, temos:

$$x = -k e y = k + 1$$

Assim, o conjunto solução do sistema é:

$$S = \{(-k, k+1, k), \forall k, k \in \Re\}$$

Se desejarmos obter algumas das infinitas soluções desse sistema, basta atribuirmos a **k** valores reais, por exemplo:

Observe que o sistema acima é Possível e Indeterminado.

3)
$$\begin{cases} 2x + y + z = 2 \\ x - y + z = 2 \\ 3x + 2z = 5 \end{cases}$$

<u>Passo 1</u>: Por conveniência vamos trocar de posição as duas primeiras equações, afim de que o coeficiente da 1ª incógnita na 1ª equação seja 1.

$$\begin{cases} x - y + z = 2 \\ 2x + y + z = 1 \\ 3x + 2z = 5 \end{cases}$$

<u>Passo 2</u>: Vamos repetir a primeira equação e eliminar a variável x da segunda e terceira equação. Acompanhe:

(Segunda Equação - 2.Primeira Equação)

$$\begin{cases} x - y + z = 2 \\ 3y - z = -3 \\ 3x + 2z = 5 \end{cases}$$

(Terceira Equação - 3. Primeira Equação)

$$\begin{cases} x - y + z = 2 \\ 3y - z = -3 \\ 3y - z = -1 \end{cases}$$

<u>Passo 3</u>: Repetir as duas primeiras equações e eliminar a variável y da 3ª equação. Acompanhe:

(Terceira Equação + Segunda Equação)

$$\begin{cases} x - y + z = 2 \\ 3y - z = -3 \\ 0x + 0y + 0z = -4 \end{cases}$$

Note que a equação $\underline{0x + 0y + 0z = -4}$ nunca é satisfeita, conclui-se, então, que o sistema não possui solução. O sistema acima é impossível.

Exercícios

- 01) Se x, y e z são números reais tais que $\begin{cases} x+y+z=6\\ x+2y+3z=14 \text{ então } 3x+2y+z \text{ \'e} :\\ x+3y+6z=25 \end{cases}$
- **02**) Escalone os sistemas abaixo e resolva-os, caso tenham solução única.

a)
$$\begin{cases} x-y+z &=& 4\\ 3x+2y+z &=& 0\\ 5x+5y+z &=& -4 \end{cases}$$
 b)
$$\begin{cases} 2x+2y+z &=& 3\\ 3x+y-z &=& -1\\ x+3y+z &=& 1 \end{cases}$$
 c)
$$\begin{cases} x+y+z &=& 1\\ 2x+2y+2z &=& 2\\ 6x+6y+6z &=& 0 \end{cases}$$

03) O sistema
$$\begin{cases} x + 2y - 3z = 0 \\ 3x + 5y - 7z = 1 \\ 2x + 3y - 4z = 3 \end{cases}$$

- a) Possível e Determinado
- b) Possível e Indeterminado
- c) Homogêneo
- d) Impossível
- e) Possui apenas duas soluções inteiras
- 04) (IFAL AL) Analise as afirmativas abaixo.

I. O sistema
$$\begin{cases} x+y=5\\ 2x-y=1 \end{cases}$$
 é possível e indeterminado.

II. O sistema
$$\begin{cases} x+y-z=4\\ 2x-3y+z=-5 \text{ \'e poss\'ivel e determinado.}\\ x+2y-2z=7 \end{cases}$$

III. O sistema
$$\begin{cases} 2x+y=5 \\ 4x+2y=10 \end{cases} \text{\'e imposs\'ivel}.$$

Marque a alternativa correta.

- a) Apenas I é verdadeira.
- b) Apenas II é verdadeira.
- c) Apenas III é verdadeira.
- d) Apenas I é falsa.
- e) Apenas III é falsa.
- **05)** (IFSC SC) Segundo uma promoção realizada por um time de futebol, os associados ganham crédito de R\$6,00 em compras, na loja oficial do clube, por vitória do time, ganham R\$2,00 por empate e não ganham,

nem perdem créditos quando há derrota. Até o momento, o time jogou 8 partidas e cada vitória vale 3 pontos na tabela do campeonato, cada empate vale 1 ponto e cada derrota zero ponto, totalizando 16 pontos no campeonato e R\$32,00 de créditos para associados. Em relação aos dados acima, analise as proposições abaixo e assinale a soma da(s) **CORRETA(S)**.

- 01) A situação apresentada no enunciado pode ser representada por um sistema linear.
- 02) Há apenas uma solução para a quantidade de vitórias, empates e derrotas do time.
- 04) Não existem valores reais que representem solução para a quantidade de vitórias, empates e derrotas do time.
- 08) Há mais de uma solução para a quantidade de vitórias, derrotas e empates do time.
- 16) Podemos garantir que a quantidade de vitórias é maior que a soma de empates e derrotas.
- **06)** (UEL PR) Uma padaria possui 3 tipos de padeiros, classificados como A, B e C. Essa padaria é bem conhecida na cidade pela qualidade do pão francês, da baguete e do pão de batata.

Cada padeiro do tipo A produz, diariamente, 30 pães franceses, 100 baguetes e 20 pães de batata. Cada padeiro do tipo B produz, diariamente, 30 pães franceses, 70 baguetes e 20 pães de batata.

Cada padeiro do tipo C produz, diariamente, 90 pães franceses, 30 baguetes e 100 pães de batata.

Quantos padeiros do tipo A, do tipo B e do tipo C são necessários para que em um dia a padaria produza, exatamente, 420 pães franceses, 770 baguetes e 360 pães de batata?

- **07)** (PUC SP) Uma pessoa tem 32 moedas, sendo x de 5 centavos, y de 10 centavos e z de 25 centavos, totalizando a quantia de R\$ 4,95. Considerando os possíveis valores de x, y e z que satisfazem as condições dadas, qual das sentenças seguintes NUNCA poderia ser verdadeira?
 - a) x + y = 20
 - b) x + z = 25
 - c) x + z = 17
 - d) y + z = 25
 - e) y + z = 20

GABARITO – AULA 07

1) 10 **2)** a) SPI b) (1, -1, 3) c) SI **3)** d **4)** b **5)** 09 6) 5 tipo A, 3 tipo B e 2 tipo C

7) e

AULA 08

SISTEMAS LINEARES - DISCUSSÃO I

Vimos em aulas anteriores que em relação ao número de soluções de um sistema, ele pode ser classificado da seguinte forma:

- DETERMINADO (uma única solução)
- POSSÍVEL
- INDETERMINADO (infinitas soluções)
- IMPOSSÍVEL (não admite solução)

Vimos ainda que a resolução de um sistema linear podia ser feita com base na regra de Cramer:

$$x_1 = \frac{\det X_1}{\det S}$$
 $x_2 = \frac{\det X_2}{\det S} \cdot \cdot \cdot \cdot x_n = \frac{\det X_n}{\det S}$

Lembre-se que só é possível aplicar a Regra de Cramer em sistemas $\mathbf{n} \times \mathbf{n}$ em que det $S \neq 0$. Esses sistemas são denominados **normais.**

DISCUSSÃO DE UM SISTEMA LINEAR COM n EQUAÇÕES E n INCÓGNITAS

Discutir um sistema linear significa classificá-lo segundo um ou mais valores de determinados parâmetros. A discussão será feita em dois momentos:

- 1º) Casos onde o número de equações for igual ao número de incógnitas. Neste caso, a discussão será feita utilizando a regra de Cramer e o escalonamento.
- 2º) Casos onde o número de equações for diferente do número de incógnitas. Neste caso, a discussão será feita utilizando apenas o escalonamento.

Nesta aula estaremos discutindo sistemas em que o número de equações é igual ao número de incógnitas.

Em um sistema linear de **n** equações e **n** incógnitas, podemos ter as seguintes situações:

- 1. Se $detS \neq 0$, o sistema é possível e determinado.
- 2. Se detS = 0 , o sistema é possível indeterminado ou impossível.

Exercícios Resolvidos

1) Discutir, em função de k , o sistema $\begin{cases} x+2y=3\\ 2x+ky=2 \end{cases}$

Solução:

O sistema é possível determinado se detS ≠ 0 .Assim:

$$\begin{vmatrix} 1 & 2 \\ 2 & k \end{vmatrix} \neq 0 \Longrightarrow k - 4 \neq 0 \Longrightarrow k \neq 4$$

Se k = 4, temos:

$$\begin{cases} x + 2y = 3 \\ 2x + 4y = 2 \end{cases}$$

Escalonando o sistema, vem:

$$\begin{cases} x + 2y = 3 \\ 0x + 0y = -4 \end{cases}$$

Note que a equação $\underline{0x + 0y} = -\underline{4}$ nunca é satisfeita, conclui-se, então, que o sistema não possui solução.

Resumindo, temos:

 $\begin{cases} k \neq 4 \Rightarrow \text{sistema possível determinado} \\ k = 4 \Rightarrow \text{sistema impossível} \end{cases}$

2) Discuta o sistema
$$\begin{cases} 2x + y + 2z = 3 \\ 2mx - y + 2z = 1 \\ mx + y + 2z = n \end{cases}$$

Solução:

O sistema é possível determinado se $det S \neq 0$. Assim:

$$\begin{vmatrix} 2 & 1 & 2 \\ 2m & -1 & 2 \\ m & 1 & 2 \end{vmatrix} \neq 0 \Rightarrow 4m - 8 \neq 0 \Rightarrow m \neq 2$$

Se m = 2, temos:

$$\begin{cases} 2x + y + 2z = 3 \\ 4x - y + 2z = 1 \\ 2x + y + 2z = n \end{cases}$$

Escalonando o sistema, temos:

$$\begin{cases} 2x + y + 2z = 3 \\ 0x - 3y - 2z = -5 \\ 0x + 0y + 0z = n - 3 \end{cases}$$

Se n = $3 \rightarrow$ sistema possível e indeterminado

Se $n \neq 3 \rightarrow$ sistema impossível

Em resumo, temos:

 $\begin{cases} m \neq 2 \Rightarrow \text{sistema possível determinado} \\ m = 2 \text{ en} = 3 \Rightarrow \text{sistema possível indeterminado} \\ m = 2 \text{ en} \neq 3 \Rightarrow \text{sistema impossível} \end{cases}$

3) Discuta o sistema abaixo em função dos valores do parâmetro m.

$$\begin{cases} x+y+z &= 0 \\ x-y+mz &= 2 . \\ mx+2y+z &= -1 \end{cases}$$

O objetivo deste exercício é determinar para quais valores de m o sistema é SPD, SPI ou SI. Neste caso, é conveniente usarmos em conjunto o teorema de Cramer e escalonamento. Calculemos, inicialmente, o determinante da matriz dos coeficientes.

$$detS = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & m \\ m & 2 & 1 \end{vmatrix} = -1 + m^2 + 2 - 2m - 1 + m = m^2 - m$$

Sabemos que se $detS \neq 0$ o sistema é SPD. Então facamos

$$m^2-m\neq 0 \quad \Longrightarrow \qquad m\neq 0 \quad \text{ ou } \quad m\neq 1.$$

Se detS = 0 o sistema é SPI ou SI. Fazendo detS = 0 obtemos m = 0 ou m = 1.

Para
$$det S=0$$
, o sistema tem a forma
$$\begin{cases} x+y+z&=&0\\ x-y&=&2 \ . \ \ Vamos\ escalon\'a-lo. \\ 2y+z&=&-1 \end{cases}$$

Multiplicando a 1^a equação por -1 e somando com a 2^a , temos

$$\begin{cases} x + y + z & = & 0 \\ x - y & = & 2 & \longleftrightarrow \\ 2y + z & = & -1 \end{cases} \begin{cases} x + y + z & = & 0 \\ -2y - z & = & 2 \\ 2y + z & = & -1 \end{cases}$$

Agora, multiplicamos a equação 2 por 1 e somamos com a equação 3.

$$\begin{cases} x + y + z & = & 0 \\ -2y - z & = & 2 \leftrightarrow \\ 2y + z & = & -1 \end{cases} \begin{cases} x + y + z & = & 0 \\ -2y - z & = & 2 . \\ 0 & = & 1 \end{cases}$$

Conclusão: quando m = 0 o sistema é impossível (SI).

Para
$$m=1$$
, o sistema é
$$\begin{cases} x+y+z &= 0 \\ x-y+z &= 2 \\ x+2y+z &= -1 \end{cases}$$

Novamente vamos escalonar.

Multiplique a equação 1 por −1 e some com a segunda.

$$\begin{cases} x + y + z &= 0 \\ x - y + z &= 2 \leftrightarrow \\ x + 2y + z &= -1 \end{cases} \begin{cases} x + y + z &= 0 \\ -2y &= 2 \\ x + 2y + z &= -1 \end{cases}$$

Multiplique a equação 1 por -1 e some com a terceira.

$$\begin{cases} x + y + z & = & 0 \\ -2y & = & 2 & \leftrightarrow \\ x + 2y + z & = & -1 \end{cases} \begin{cases} x + y + z & = & 0 \\ -2y & = & 2 \\ y & = & -1 \end{cases}$$

Multiplicando a equação 2 por 1/2 e somando com a terceira, obtemos

$$\begin{cases} x + y + z &= 0 \\ -2y &= 2 \leftrightarrow \\ y &= -1 \end{cases} \begin{cases} x + y + z &= 0 \\ -2y &= 2 \end{cases}$$

$$\Rightarrow \begin{cases} x + y + z &= 0 \\ 0 &= 0 \end{cases}$$

Conclusão: quando $m=1\,\mathrm{como}$ o sistema tem infinitas soluções (número de equações menor que o número de incógnitas).

IMPORTANTE!

Se um sistema linear com ${\bf n}$ equações e ${\bf n}$ incógnitas é possível e indeterminado, temos:

$$\det S = \det X = \det Y = \det Z = 0$$

No entanto, a recíproca nem sempre é válida. Assim, por

exemplo, o sistema
$$\begin{cases} x+y+z=2\\ 3x+3y+3z=6 & \text{possui:}\\ 7x+7y+7z=11 \end{cases}$$

 $\det S = \det X = \det Y = \det Z = 0$, no entanto, é impossível.

Exercícios

$$\textbf{01)} \quad \text{O} \quad \text{sistema} \quad \begin{cases} 2x-2y-2z-2=0 \\ 2x+y+3z=6 \quad \text{\'e} \quad \text{poss\'ivel} \quad \text{e} \\ kx+y+5z=9 \end{cases}$$

determinado, quando o valor de *k* for:

- a) $k \neq 3$.
- b) k = 5.
- c) k = 3.
- d) $k \neq 5$.
- e) k = 0.

02) (FGV – SP) Sendo k um número real, o sistema linear
$$\begin{cases} 9x-6y=21\\ 6x-4y=k \end{cases}$$
 possui infinitas soluções $\ (x,y)\$ para $\ k$ igual a

- a) -10,5.
- b) 0.
- c) 7.
- d) 10,5.
- e) 14.

03) (ESPECEX) Para que o sistema linear
$$\begin{cases} 2x + y = 5 \\ ax + 2y = b \end{cases}$$
 seja possível e indeterminado, o valor de $a + b$ é:

- a) -1
- b) 4
- c) 9
- d) 14
- e) 19

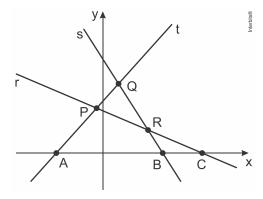
04) (ESPECEX) Para que o sistema linear
$$\begin{cases} x+y+az=1\\ x+2y+z=2\\ 2x+5y-3z=b \end{cases}$$
 possível e indeterminado, o valor de $a+b$ é igual a

- a) 10
- b) 11
- c) 12
- d) 13
- e) 14

05) (EFOMM) Dado o sistema linear abaixo, analise as seguintes afirmativas:

$$\begin{bmatrix} 3 & 4 & -6 \\ 0 & 16 & b \\ 1 & -4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ a \\ 3 \end{bmatrix}$$

- I. Se $b \neq -12$, o sistema linear terá uma única solução.
- II. Se a = b = -12, o sistema linear terá infinitas soluções.
- III. Se b = -12, o sistema será impossível.
- a) Todas as afirmativas são corretas.
- b) Todas as afirmativas são incorretas.
- c) Somente as afirmativas I e III são corretas.
- d) Somente as afirmativas I e II são corretas.
- e) Somente as afirmativas II e III são corretas.
- 06) (ENEM) Na figura estão representadas três retas no plano cartesiano, sendo P, Q e R os pontos de intersecções entre as retas, e A, B e C os pontos de intersecções dessas retas com o eixo X.



Essa figura é a representação gráfica de um sistema linear de três equações e duas incógnitas que

- a) possui três soluções reais e distintas, representadas pelos pontos P, Q e R, pois eles indicam onde as retas se intersectam.
- b) possui três soluções reais e distintas, representadas pelos pontos A, B e C, pois eles indicam onde as retas intersectam o eixo das abscissas.
- c) possui infinitas soluções reais, pois as retas se intersectam em mais de um ponto.
- d) não possui solução real, pois não há ponto que pertença simultaneamente às três retas.
- e) possui uma única solução real, pois as retas possuem pontos em que se intersectam.

- 07) (UEPG PR) Dados os sistemas $S_1:$ $\begin{cases} 4x+5y=7\\ 2x-3y=9 \end{cases}$ e $S_2:$ $\begin{cases} mx+4y=5\\ 3x-y=k \end{cases}$, nas variáveis x e y, assinale o que for correto.
 - 01) S_2 é possível e determinado para $\,m=-12\,$ e $k=-\frac{5}{4}.$
 - 02) S_2 é impossível para m = -12 e $k \neq -\frac{5}{4}$.
 - 04) Se $\,S_1^{}\,$ e $\,S_2^{}\,$ são equivalentes, então $\,k+m=13.$
 - 08) S_2 é possível e indeterminado para $m \neq -12$ e $k = -\frac{5}{4}.$
 - 16) Se (x, y) é a solução de S_1 , então x + y = 4.
- **08)** (ACAFE SC) Seja o sistema S de equações lineares nas incógnitas X, y e z, e a e b números reais, dado por

$$S = \begin{cases} -x + y - z = 4 \\ 4x + ay + z = -25, \text{ analise as a firmações:} \\ x - y + 3z = b \end{cases}$$

- I. A matriz dos coeficientes associada ao sistema S tem determinante igual a (-2a-8).
- II. O sistema S é impossível para a = -4 e $b \ne 2$.
- III. Se a=-1 e para algum valor real de b, a tripla ordenada $(x,y,z)=\left(-7,\frac{b-2}{2},\frac{4+b}{2}\right)$ é solução do sistema S.
- IV. O sistema S possui infinitas soluções para a=-4 e qualquer $b\in\mathbb{R}.$

Todas as afirmações corretas estão em:

- a) I II
- b) I IV
- c) I II III
- d) II III IV

GABARITO – AULA 08

1) d 2) e 3) d 4) b 5) d 6) d 7) 06 8) c

SISTEMAS LINEARES - DISCUSSÃO II

DISCUSSÃO DE UM SISTEMA LINEAR COM NÚMEROS DE EQUAÇÕES DIFERENTE DO NÚMERO DE INCÓGNITAS

Para um sistema linear com número de equações diferente do número de incógnitas, a discussão será feita pelo escalonamento. Acompanhe alguns exemplos resolvidos:

1) Discuta o sistema segundo o parâmetro real m.

$$\begin{cases} x + 2y + 4z = 10 \\ 2x + 4y + 8z = m \end{cases}$$

Escalonando o sistema, vem:

$$\begin{cases} x + 2y + 4z = 10 \\ 0x + 0y + 0z = m - 20 \end{cases}$$

Analisando a segunda equação, temos:

Para m = $20 \rightarrow$ Sistema é possível e indeterminado Para m $\neq 20 \rightarrow$ Sistema é impossível

2) Discuta em função do parâmetro m, o sistema:

$$\begin{cases} x + 2y = 4 \\ 2x + 5y = 7 \\ 3x + 7y = m \end{cases}$$

Escalonado o sistema, vem:

$$\begin{cases} x + 2y = 4 \\ y = 1 \Rightarrow \begin{cases} x + 2y = 4 \\ y = 1 \end{cases} \Rightarrow \begin{cases} y = 1 \\ 0y = m - 13 \end{cases}$$

Se m = 13, resulta o sistema:
$$\Rightarrow \begin{cases} x + 2y = 4 \\ y = 1 \end{cases} \therefore x = 2 \text{ e } y = 1$$

Logo, o sistema é possível e determinado.

Se m \neq 13, o sistema será impossível, pois a equação 0y = m - 13 nunca será verificada.

Resumindo, temos:

Exercícios

01) Em relação ao sistema linear $\begin{cases} x + 2y = 8 \\ 2x + 3y = 13 \text{ , podemos} \\ 3x + 4y = 18 \end{cases}$

afirmar:

- a) não possui solução
- b) possui infinitas soluções
- c) admite o par (2; 3) como única solução
- d) possui o par (3; 2) como uma das soluções
- e) admite apenas duas soluções.

02) Em relação ao sistema linear
$$\begin{cases} x+y=3\\ 2x+3y=7 \text{ , podemos}\\ 4x+y=6 \end{cases}$$

afirmar:

- a) possui infinitas soluções
- b) admite o par (2; 1) como única solução
- c) possui o par (1, 2) como uma das soluções
- d) admite apenas duas soluções
- e) não possui solução

03) O sistema linear
$$\begin{cases} x + 2y = 3 \\ 2x + 4y = 6 \\ 3x + 6y = 9 \end{cases}$$

- a) é possível e indeterminado, sendo (3; 1) uma das soluções
- b) é possível e determinado sendo (3; 0) a única solução
- c) é possível e indeterminado, sendo (- 1, 2) uma das soluções
- d) admite apenas duas soluções.
- e) é impossível

04) O sistema linear abaixo

$$\begin{cases} x + 3y + 2z = 1 \\ 2x + 6y + 4z = 2 \end{cases}$$

- a) admite infinitas soluções
- b) admite apenas duas soluções
- c) é impossível
- d) é possível e determinado
- e) admite a terna (0, 0, 0) como uma das soluções

05) O sistema linear abaixo

$$\begin{cases} x + 4y + 5z = 11 \\ 2x + 8y + 10z = 18 \end{cases}$$

- a) admite infinitas soluções
- b) admite apenas duas soluções
- c) é impossível
- d) é possível e determinado
- e) admite a terna (0, 0, 0) como uma das soluções
- 06) (FGV SP) O sistema linear abaixo

$$\begin{cases} x + 2y - 3z = 1 \\ 2x - y - z = 4 \end{cases}$$

- a) é impossível
- b) admite apenas uma solução
- c) admite apenas duas soluções
- d) admite apenas três soluções
- e) admite infinitas soluções
- **07)** (FGV SP) Considere o sistema linear: $\begin{cases} 3x 2y = 4 \\ 4x + y = -13 \\ x + y = k \end{cases}$

de incógnitas x e y e parâmetro k. Para que o sistema seja possível e indeterminado, devemos ter:

- a) k = -7
- b) $k \neq -7$
- c) o sistema nunca será possível e indeterminado
- d) k é um número real qualquer
- e) k > -3
- **08)** O sistema linear $\begin{cases} 2x + 3y + 4z = 5 \\ 4x + 6y + az = b \end{cases}$ é impossível para:
 - a) a = 8 e b = 10
 - b) $a \neq 8 e b = 10$
 - c) $a = 8 e b \neq 10$
 - d) $a = -8 e b \neq 10$
 - e) $a \neq -8 \text{ e b} = 10$
- **09)** (UFSC SC) Marque a(s) proposição(ões) **CORRETA(S).**
 - 01. Dada uma matriz A, de ordem m x n, e uma matriz B de ordem n x p, a matriz produto A.B existe e é de ordem m x p.
 - 02. Se um sistema de equações possui mais equações do que incógnitas, então ele é incompatível (impossível).

- 04. A terna (2, 1, 0) é solução do sistema $\begin{cases} x + 2y + 3z = 4 \\ 2x y 2z = 3 \\ 3x + y + z = 7 \\ 6x + 2y + 2z = 14 \end{cases}$
- 08. Três pessoas foram a uma lanchonete. A primeira tomou 2 (dois) guaranás e comeu 1 (um) pastel e pagou R\$ 4,00. A segunda tomou 1 (um) guaraná e comeu 2(dois) pastéis e pagou R\$ 5,00. A terceira tomou 2 (dois) guaranás e comeu 2(dois) pastéis e pagou R\$ 7,00. Então, pelo menos, uma das pessoas não pagou o preço correto.
- 10) (UFPR PR) Os clientes de um determinado banco podem fazer saques em um caixa automático, no qual há cédulas disponíveis nos valores de R\$ 5,00, R\$ 10,00 e R\$ 20,00. Considere as seguintes afirmativas referentes a um saque no valor de R\$ 300,00:
 - I. Existe somente uma maneira de compor esse valor com 60 cédulas.
 - II. Existem somente quatro formas de compor esse valor com 20 cédulas.
 - III. Existe somente uma maneira de compor esse valor com a mesma quantidade de cédulas de cada um dos três valores disponíveis.

Assinale a alternativa correta.

- a) Somente a afirmativa I é verdadeira.
- b) Somente as afirmativas II e III são verdadeiras.
- c) Somente as afirmativas I e II são verdadeiras.
- d) Somente as afirmativas I e III são verdadeiras.
- e) As afirmativas I, II e III são verdadeiras.

GABARITO – AULA 09 1) c 2) e 3) c 4) a 5) c 6) e 7) c 8) c 9) 13 10) c

SISTEMAS LINEARES HOMOGÊNEOS

Sistema linear homogêneo é aquele em que os termos independentes são iguais a zero. Veja os exemplos abaixo:

$$I)\begin{cases} 2x + 5y + 2z = 0 \\ x - y + 2z = 0 \\ 3x + 2y + 7z = 0 \end{cases} II)\begin{cases} x - y + z = 0 \\ 2x + 3y + z = 0 \end{cases}$$

Uma solução evidente para o sistema homogêneo é a sequência (0, 0, 0,.....0). Esta solução é chamada solução trivial. Assim, o sistema homogêneo é sempre possível.

Assim, o terno (0, 0, 0) é solução para o sistema
$$\begin{cases} x-y+z=0 \\ 2x+3y+z=0 \end{cases}$$

Quando aplicamos a regra de Cramer num sistema linear homogêneo com número de equações igual ao número de incógnitas, temos que:

- 3. Se $\det S \neq 0 \rightarrow \text{ sistema possível determinado}$ (solução trivial)
- Se det S = 0 → sistema possível indeterminado (soluções próprias além da solução trivial)

Exercícios Resolvidos

1) Resolva o sistema linear
$$\begin{cases} 2x + y + z &= 0 \\ x + -2y &= 0 \\ -x - 4y + z &= 0 \end{cases}$$

Solução:

Vamos calcular o determinante da matriz dos coeficientes.

$$detS = \begin{vmatrix} 2 & 1 & 1 \\ 1 & -2 & 0 \\ -1 & -4 & 1 \end{vmatrix} = -4 - 4 - 2 - 1 = -11. \quad Assim,$$

como $detS \neq 0$, o sistema tem solução única, a saber, a solução trivial (0,0,0).

2) Calcule m a fim de que o sistema linear

$$\begin{cases}
mx + y - 2z &= 0 \\
2mx + 3y + z &= 0 \text{ tenha apenas a solução trivial.} \\
x + y - 5z &= 0
\end{cases}$$

Solução:

Neste caso, precisamos fazer $det S \neq 0$.

$$detS = \begin{vmatrix} m & 1 & -2 \\ 2m & 3 & 1 \\ 1 & 1 & -5 \end{vmatrix} = -15m + 1 - 4m + 6 - m + 10m = -10m + 7$$

Fazendo $\det S \neq 0$, $temos -10m + 7 \neq 0$

$$\implies \quad m \neq \frac{7}{10} \, .$$

3) Determine o valor de $m \in \mathbb{R}$ que torna o sistema $\begin{cases} x+mz=0\\ mx+y=0 \text{ possível e indeterminado.} \\ my+z=0 \end{cases}$

Solução:

$$\begin{vmatrix} 1 & 0 & m \\ m & 1 & 0 \\ 0 & m & 1 \end{vmatrix} = 0 \Rightarrow 1 + m^3 = 0 \Rightarrow m = -1$$

Exercícios

01) (ACAFE – SC) O sistema linear
$$\begin{cases} -x+2y=0\\ 2x+z=0 & \text{\'e}\\ x+mz=0 \end{cases}$$

indeterminado para:

- a) m = 0.5
- b) m = 2
- c) m = -1
- d) m = 1

determine a soma dos números associados à(s) proposição(ões) **VERDADEIRA(S)**.

- 01. O par ordenado (-15,5) é uma solução do sistema S_1 .
- 02. O sistema S₁ é possível e determinado.
- 04. A solução do sistema S_1 é uma reta que não passa pela origem.
- 08. O sistema S_2 : $\begin{cases} 2x + 6y = 0 \\ -10x 30y = 0 \end{cases}$ é equivalente ao

sistema S₁.

03) (FGV-SP) O sistema linear
$$\begin{cases} x+y+z &= 0 \\ x+2y+mz &= 0 \\ x+4y+m^2z &= 0 \end{cases}$$

admitirá apenas a solução trivial se:

- a) m = 1
- b) $m \neq 1$ e $m \neq 2$
- c) m = 1 ou m = 2
- d) $m \neq 5$
- e) $m \neq 4$

04) (UECE – CE) Em relação ao sistema
$$\begin{cases} x+y+z=0\\ x-my+z=0,\\ mx-y-z=0 \end{cases}$$

pode-se afirmar corretamente que

- a) o sistema admite solução não nula apenas quando m=-1.
- b) para qualquer valor de m, a solução nula (x = 0, y = 0, z = 0) é a única solução do sistema.
- c) o sistema admite solução não nula quando $\,m=2\,$ ou $\,m=-2\,$.
- d) não temos dados suficientes para concluir que o sistema tem solução não nula.
- **05)** (UEM PR) Dado o seguinte sistema linear

$$A: \begin{cases} 2x+3y+4z=0\\ 4x+4y+5z-3=0,\\ x+y+6z+4=0 \end{cases}$$

assinale o que for correto.

- 01) O sistema A é homogêneo.
- 02) O sistema A é possível e indeterminado.
- 04) O determinante da matriz dos coeficientes é nulo.

08) O sistema linear
$$\begin{cases} x=2 \\ y=0 & \text{\'e equivalente ao sistema} \\ z=-1 \end{cases}$$

Α.

16) Todo sistema linear homogêneo tem solução.

GABARITO - AULA 10

1) a 2) 09 3) b 4) a 5) 24